首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Enhanced Gabor Feature Based Classification Using a Regularized Locally Tensor Discriminant Model for Multiview Gait Recognition
【24h】

Enhanced Gabor Feature Based Classification Using a Regularized Locally Tensor Discriminant Model for Multiview Gait Recognition

机译:增强的基于Gabor特征的分类,使用规则化局部张量判别模型进行多视图步态识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel multiview gait recognition method that combines the enhanced Gabor (EG) representation of the gait energy image and the regularized local tensor discriminant analysis (RLTDA) method. EG first derives desirable gait features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to surface, shoe types, clothing, carrying conditions, and so on. Unlike traditional Gabor transformation, which does not consider the structural characteristics of the gait features, our representation method not only considers the statistical property of the input features but also adopts a nonlinear mapping to emphasize those important feature points. The dimensionality of the derivation of EG gait feature is further reduced by using RLTDA, which directly obtains a set of locally optimal tensor eigenvectors and can capture nonlinear manifolds of gait features that exhibit appearance changes due to variable viewing angles. An aggregation scheme is adopted to combine the complementary information from differently RLTDA recognizers at the matching score level. The proposed method achieves the best average Rank-1 recognition rates for multiview gait recognition based on image sequences from the USF HumanID gait challenge database and the CASIA gait database.
机译:本文提出了一种新颖的多视图步态识别方法,该方法将步态能量图像的增强Gabor(EG)表示与规则化局部张量判别分析(RLTDA)方法相结合。 EG首先获得理想的步态特征,以空间频率,空间局部性和方向选择性为特征,以应对由于表面,鞋子类型,衣服,携带条件等引起的变化。与传统的不考虑步态特征的结构特征的Gabor变换不同,我们的表示方法不仅考虑输入特征的统计特性,而且采用非线性映射来强调那些重要的特征点。 EG步态特征推导的维数通过使用RLTDA进一步降低,RLTDA直接获得一组局部最优的张量本征向量,并可以捕获步态特征的非线性流形,这些非线性特征会由于可变的视角而出现外观变化。采用聚合方案,以匹配分数级别组合来自不同RLTDA识别器的补充信息。所提出的方法基于USF HumanID步态挑战数据库和CASIA步态数据库中的图像序列,实现了多视角步态识别的最佳平均Rank-1识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号