首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks
【24h】

The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks

机译:Lovasz-Softmax损失:神经网络交叉口联合度量的优化的可替代替代方法

获取原文

摘要

The Jaccard index, also referred to as the intersection-over-union score, is commonly employed in the evaluation of image segmentation results given its perceptual qualities, scale invariance - which lends appropriate relevance to small objects, and appropriate counting of false negatives, in comparison to per-pixel losses. We present a method for direct optimization of the mean intersection-over-union loss in neural networks, in the context of semantic image segmentation, based on the convex Lovász extension of submodular losses. The loss is shown to perform better with respect to the Jaccard index measure than the traditionally used cross-entropy loss. We show quantitative and qualitative differences between optimizing the Jaccard index per image versus optimizing the Jaccard index taken over an entire dataset. We evaluate the impact of our method in a semantic segmentation pipeline and show substantially improved intersection-over-union segmentation scores on the Pascal VOC and Cityscapes datasets using state-of-the-art deep learning segmentation architectures.
机译:Jaccard索引,也称为交叉相交分数,由于其感知质量,尺度不变性(通常与小物体具有适当的相关性以及对假阴性的适当计数),因此通常用于评估图像分割结果。与每像素损失的比较。我们提出了一种基于子模块损失的凸LovÃzz扩展在语义图像分割的上下文中直接优化神经网络中的平均交点-工会损失的方法。与传统使用的交叉熵损失相比,该损失表现出比Jaccard指数更好的性能。我们显示了在优化每个图像的Jaccard索引与优化整个数据集上的Jaccard索引之间的数量和质量上的差异。我们评估了我们的方法在语义分割流水线中的影响,并使用最新的深度学习分割架构在Pascal VOC和Cityscapes数据集上显示了大大提高的交叉相交分割分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号