【24h】

Combining Temporal Aspects of Dynamic Networks with Node2Vec for a more Efficient Dynamic Link Prediction

机译:将动态网络的时间方面与Node2Vec相结合,以实现更高效的动态链接预测

获取原文

摘要

In many real-life applications it is crucial to be able to, given a collection of link states of a network in a certain time period, accurately predict the link state of the network at a future time. This is known as dynamic link prediction, which compared to its static counterpart is more complex, as capturing the temporal characteristics is a non-trivial task. This explains while still majority of today's research in network representation learning focuses on static setting ignoring temporal information. In this work, we focus on one such case and aim at extending node2vec, representation learning method successfully applied for static link prediction, to a dynamic setup. This extended method is applied and validated on several real-life networks with different properties. Results show that taking into account dynamic aspect outperforms static approach. Additionally, based on the network properties, recommendations are given for the node2vec parameters.
机译:在许多实际应用中,给定特定时间段内网络的链路状态的集合,能够准确预测未来某个时间网络的链路状态至关重要。这就是所谓的动态链接预测,与静态链接预测相比,它更为复杂,因为捕获时间特性是一项艰巨的任务。这解释了当今网络表示学习的大部分研究都集中在忽略时间信息的静态设置上。在这项工作中,我们专注于这种情况,旨在将成功用于静态链接预测的表示学习方法node2vec扩展到动态设置。此扩展方法已在具有不同属性的多个现实网络中应用和验证。结果表明,考虑到动态方面要优于静态方法。此外,基于网络属性,还为node2vec参数提供了建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号