首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks
【24h】

Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks

机译:动态社交网络中用于链接预测的可扩展时间潜在空间推断。

获取原文
获取原文并翻译 | 示例

摘要

We propose a temporal latent space model for link prediction in dynamic social networks, where the goal is to predict links over time based on a sequence of previous graph snapshots. The model assumes that each user lies in an unobserved latent space, and interactions are more likely to occur between similar users in the latent space representation. In addition, the model allows each user to gradually move its position in the latent space as the network structure evolves over time. We present a global optimization algorithm to effectively infer the temporal latent space. Two alternative optimization algorithms with local and incremental updates are also proposed, allowing the model to scale to larger networks without compromising prediction accuracy. Empirically, we demonstrate that our model, when evaluated on a number of real-world dynamic networks, significantly outperforms existing approaches for temporal link prediction in terms of both scalability and predictive power.
机译:我们为动态社交网络中的链接预测提出了一个时间潜在空间模型,该模型的目标是根据一系列先前的图形快照预测一段时间内的链接。该模型假定每个用户都位于未观察到的潜在空间中,并且在潜在空间表示中相似用户之间更可能发生交互。此外,随着网络结构的发展,该模型允许每个用户逐渐在潜在空间中移动其位置。我们提出一种全局优化算法,以有效地推断时间潜在空间。还提出了两种具有局部和增量更新的替代优化算法,使模型可以扩展到更大的网络,而不会影响预测精度。从经验上讲,我们证明了我们的模型在许多现实世界的动态网络上进行评估时,在可伸缩性和预测能力方面均明显优于现有的时间链路预测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号