【24h】

Sounds of Silence Breakers: Exploring Sexual Violence on Twitter

机译:打破沉默的声音:在Twitter上探索性暴力

获取原文

摘要

Gender-based-violence is a serious concern in recent times. Due to the social stigma attached to these assaults, victims rarely come forward. Implementing policy measures to prevent sexual violence get constrained due to lack of crime statistics. However, the recent outcry on the Twitter platform allows us to address this concern. Sexual assaults occur at workplaces, public places, educational institutes and also at home. Policy level approaches and awareness campaign for these assaults would not be similar. So, we want to identify the risk factor associated with these sexual assaults. We extracted 0.7 million tweets during the #MeToo social media movement. Next, we employ deep learning techniques to classify these sexual violences. We observe that sexual assaults by a family member at own home is a more serious concern than harassment by a stranger at public places. This study reveals assaults by a known person are more prevalent than assaults by unknown strangers.
机译:基于性别的暴力是近来的一个严重问题。由于这些袭击给人以社会耻辱,受害者很少挺身而出。由于缺乏犯罪统计,实施防止性暴力的政策措施受到限制。但是,最近在Twitter平台上的强烈抗议使我们能够解决这一问题。性侵犯发生在工作场所,公共场所,教育机构以及家中。针对这些攻击的政策级方法和宣传运动将不会相似。因此,我们想确定与这些性侵犯有关的危险因素。在#MeToo社交媒体运动中,我们提取了70万条推文。接下来,我们采用深度学习技术对这些性暴力进行分类。我们观察到,与家人在公共场所进行的性骚扰相比,家庭成员在家中的性侵犯更为严重。这项研究表明,与陌生人的攻击相比,已知人的攻击更为普遍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号