首页> 外文会议>IEEE international conference on system, computation, automation and networking >Using deep learning to enhance head and neck cancer diagnosis and classification
【24h】

Using deep learning to enhance head and neck cancer diagnosis and classification

机译:使用深度学习来增强头颈癌的诊断和分类

获取原文

摘要

Head and neck cancer detection is performed by collecting 26019 CT scan images from Cancer Imaging Archive (TCIA) as this cancer rapidly increases now a days. This paper mainly focuses on classifier Deep learning framework in h2o that gives better accuracy. At first CT scan image of head and neck cancer is given as input to the system and processed through the image processing technique called weiner filter. Then process the image through the segmentation technique called fuzzy c means algorithm. After that feature extraction technique Gray Level Co-Occurrence Matrix (GLCM) is used to extract the features. These features are given to classifier to train the model and finally it obtains the satisfactory results with 98.8% accuracy.
机译:头颈癌的检测是通过收集来自癌症影像档案馆(TCIA)的26019 CT扫描图像来进行的,因为这种癌症如今已经迅速增加。本文主要关注h2o中的分类器深度学习框架,该框架提供了更好的准确性。首先,将头颈癌的CT扫描图像作为系统的输入,并通过称为韦纳滤波器的图像处理技术进行处理。然后通过称为模糊c均值算法的分割技术对图像进行处理。之后,使用特征提取技术灰度共生矩阵(GLCM)来提取特征。将这些特征提供给分类器以训练模型,最后以98.8%的精度获得满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号