首页> 外文会议>IEEE International Conference on Robotics & Automation >Non-monologue HMM-based speech synthesis for service robots: A cloud robotics approach
【24h】

Non-monologue HMM-based speech synthesis for service robots: A cloud robotics approach

机译:基于非HMM的服务机器人语音合成:一种云机器人方法

获取原文

摘要

Robot utterances generally sound monotonous, unnatural, and unfriendly because their Text-to-Speech (TTS) systems are not optimized for communication but for text-reading. Here we present a non-monologue speech synthesis for robots. We collected a speech corpus in a non-monologue style in which two professional voice talents read scripted dialogues. Hidden Markov models (HMMs) were then trained with the corpus and used for speech synthesis. We conducted experiments in which the proposed method was evaluated by 24 subjects in three scenarios: text-reading, dialogue, and domestic service robot (DSR) scenarios. In the DSR scenario, we used a physical robot and compared our proposed method with a baseline method using the standard Mean Opinion Score (MOS) criterion. Our experimental results showed that our proposed method's performance was (1) at the same level as the baseline method in the text-reading scenario and (2) exceeded it in the DSR scenario. We deployed our proposed system as a cloud-based speech synthesis service so that it can be used without any cost.
机译:机器人的语音通常听起来单调,不自然且不友好,因为它们的文本语音转换(TTS)系统不是针对交流而是针对文本阅读进行了优化。在这里,我们提出了一种针对机器人的非独白语音合成。我们收集了非语言风格的语音语料库,其中两名专业语音人才阅读了脚本对话。然后用语料库训练隐马尔可夫模型(HMM),并将其用于语音合成。我们进行了实验,在24种情况下,在三种情况下对建议的方法进行了评估:文本阅读,对话和家庭服务机器人(DSR)情况。在DSR方案中,我们使用了物理机器人,并使用标准的平均意见得分(MOS)标准将我们提出的方法与基线方法进行了比较。我们的实验结果表明,我们提出的方法的性能为(1)在文本阅读方案中与基线方法处于同一水平,并且(2)在DSR方案中超过了基线方法。我们将我们提出的系统部署为基于云的语音合成服务,以便可以免费使用它。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号