首页> 外文会议>IEEE International Conference on Robotics & Automation >Start from minimum labeling: Learning of 3D object models and point labeling from a large and complex environment
【24h】

Start from minimum labeling: Learning of 3D object models and point labeling from a large and complex environment

机译:从最小标记开始:从大型复杂环境中学习3D对象模型和点标记

获取原文

摘要

A large category model base can provide object-level knowledge for various perception tasks of the intelligent vehicle system. The automatic and efficient construction of such a model base is highly desirable but challenging. This paper presents a novel semi-supervised approach to discover possible prototype models of 3D object structures from the point cloud of a large and complex environment, given a limited number of seeds in an object category. Our method incrementally trains the models while simultaneously collecting object samples. Considering the bias problem of model learning caused by bias accumulation in a sample collection, we propose to gradually differentiate the standard category model into several sub-category models to represent different intra-category structural styles. Thus, new sub-categories are discovered and modeled, old models are improved, and redundant models for similar structures are deleted iteratively during the learning process. This multiple-model strategy provides several interactive options for the category boundary to deal with the bias problem. Experimental results demonstrate the effectiveness and high efficiency of our approach to model mining from “big point cloud data”.
机译:大类别模型库可以为智能车辆系统的各种感知任务提供对象级知识。这种模型库的自动和有效构建是非常需要的,但是具有挑战性。本文提出了一种新颖的半监督方法,可以在大型和复杂环境的点云中找到3D对象结构的可能原型模型,给定对象类别中的种子数量有限。我们的方法逐步训练模型,同时收集对象样本。考虑到样本集合中的偏差累积引起的模型学习偏差问题,我们建议将标准类别模型逐渐区分为几个子类别模型,以表示不同的类别内部结构样式。因此,在学习过程中发现并建模了新的子类别,改进了旧模型,并反复删除了类似结构的冗余模型。这种多模型策略为类别边界提供了几种交互式选项,以解决偏差问题。实验结果证明了我们从“大点云数据”进行模型挖掘的方法的有效性和高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号