首页> 外文会议>IEEE International Conference on Robotics & Automation >Geometry constrained sparse embedding for multi-dimensional transfer function design in direct volume rendering
【24h】

Geometry constrained sparse embedding for multi-dimensional transfer function design in direct volume rendering

机译:直接体积渲染中多维传递函数设计的几何约束稀疏嵌入

获取原文

摘要

Direct volume rendering (DVR) is commonly employed for the medical visualization. Multi-dimensional transfer functions are used in DVR to emphasize the region of interest in details. However, it is impractical to interact directly with the functions in more than three dimension. This paper proposes a novel framework called geometry constrained sparse embedding (GCSE) for dimensionality reduction (DR). GCSE allows the conventional DR methods to be applied to a dictionary with much smaller atoms instead. The mapping derived from the dictionary feeds to the original features to obtain the ones in the reduced dimension. To obtain a good dictionary, the intrinsic structure of features is encoded in the sparse embedding based on a geometry distance. In addition, stochastic gradient descent algorithm is employed to speed up the dictionary learning. Various experiments have been conducted using both synthetic and real CT data sets. Compared with conventional methods, GCSE not only produces the comparable results, but also performs well with the capability to handle the large data set more powerfully. The rendering results using the real CT data has demonstrated the effectiveness of GCSE.
机译:直接体积渲染(DVR)通常用于医学可视化。 DVR中使用了多维传递函数,以详细强调感兴趣的区域。但是,直接在多个维度上与功能进行交互是不切实际的。本文提出了一种新颖的称为几何约束的稀疏嵌入(GCSE)的框架,用于降维(DR)。 GCSE允许将常规的DR方法应用于具有更小的原子的字典。从字典派生的映射将馈送到原始特征,以获取降维的特征。为了获得良好的字典,基于几何距离在稀疏嵌入中对特征的固有结构进行编码。另外,采用随机梯度下降算法来加速字典学习。使用合成和真实CT数据集已进行了各种实验。与传统方法相比,GCSE不仅可以产生可比的结果,而且在处理强大数据集方面也表现出色。使用实际CT数据进行的渲染结果证明了GCSE的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号