首页> 外文会议>IEEE International Conference on Robotics & Automation >Distributed robotic sampling of non-homogeneous spatio-temporal fields via recursive geometric sub-division
【24h】

Distributed robotic sampling of non-homogeneous spatio-temporal fields via recursive geometric sub-division

机译:通过递归几何细分对非均匀时空场进行分布式机器人采样

获取原文

摘要

Environmental monitoring, an important application for robots, has begun to be addressed recently with linear least squares regression techniques because they estimate the values of measured attributes and their uncertainty. But several challenges remain when performing adaptive sampling in a communication-constrained distributed multi-robot setting. When the attributes of interest evolve over time (as is natural for many environments) any non-homogeneous spatial variability may necessitate continual re-modeling of the field dynamics and/or re-sampling of the field. This raises questions about the robots' division of labor and workload balance that can be difficult to address when sample information is not stored centrally. This paper tackles these coordination problems efficiently by introducing a sub-division-based modeling technique appropriate for distributed decision-making. We augment Ordinary Kriging to enable representation of a field's (potentially non-homogeneous) evolution through Bayes filtering that characterize the underlying dynamics. This approach not only enables adaptive path planning in the field, but the sub-divided areas lead to a straightforward formulation of the optimal workload distribution through modification of an approximate graph partitioning algorithm. Using a simulated multi-robot sampling scenario, we demonstrate and validate the approach. The experiments show good performance in terms of cross-validation using real values and illustrate how hotspots are identified and modeled, in turn affecting the division of labor.
机译:环境监测是机器人的重要应用,最近开始使用线性最小二乘回归技术来解决环境监测问题,因为它们可以估计所测量属性的值及其不确定性。但是,在通信受限的分布式多机器人环境中执行自适应采样时,仍然存在一些挑战。当感兴趣的属性随时间变化时(对于许多环境是自然的),任何非均匀的空间变异性都可能需要对场动力学进行连续的重新建模和/或对场进行重新采样。这就提出了有关机器人的分工和工作量平衡的问题,当样本信息未集中存储时,可能很难解决。本文通过引入适用于分布式决策的基于细分的建模技术,有效地解决了这些协调问题。我们扩充了普通克里金法,以通过表征基本动态特性的贝叶斯过滤来表示一个领域(可能是非均匀的)演化。这种方法不仅可以在现场进行自适应路径规划,而且通过修改近似图分区算法,可以对细分区域进行最优工作量分配的直接表述。使用模拟的多机器人采样方案,我们演示并验证了该方法。这些实验显示了在使用实际值进行交叉验证方面的良好性能,并说明了如何识别和建模热点,进而影响了分工。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号