首页> 外文会议>IEEE International Conference on Robotics and Automation;ICRA '09 >Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance
【24h】

Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance

机译:受生物启发的动力产生系统:自动实时目标自适应和避障

获取原文

摘要

Dynamical systems can generate movement trajectories that are robust against perturbations. This article presents an improved modification of the original dynamic movement primitive (DMP) framework by Ijspeert et al [1], [2]. The new equations can generalize movements to new targets without singularities and large accelerations. Furthermore, the new equations can represent a movement in 3D task space without depending on the choice of coordinate system (invariance under invertible affine transformations). Our modified DMP is motivated from biological data (spinal-cord stimulation in frogs) and human behavioral experiments. We further extend the formalism to obstacle avoidance by exploiting the robustness against perturbations: an additional term is added to the differential equations to make the robot steer around an obstacle. This additional term empirically describes human obstacle avoidance. We demonstrate the feasibility of our approach using the Sarcos Slave robot arm: after learning a single placing movement, the robot placed a cup between two arbitrarily given positions and avoided approaching obstacles.
机译:动力系统可以生成对扰动具有鲁棒性的运动轨迹。本文介绍了Ijspeert等人[1],[2]对原始动态运动基元(DMP)框架的改进改进。新的方程式可以将运动推广到新的目标,而无需奇异和大加速度。此外,新方程式可以表示3D任务空间中的运动,而无需依赖于坐标系的选择(可逆仿射变换下的不变性)。我们修改后的DMP受到生物学数据(青蛙的脊髓刺激)和人类行为实验的启发。通过利用抗扰动的鲁棒性,我们进一步将形式主义扩展到了避障:将附加项添加到微分方程中,以使机器人围绕障碍物转向。该附加术语从经验上描述了避免人为障碍。我们演示了使用Sarcos Slave机器人手臂的方法的可行性:在学习了一次放置动作之后,机器人将杯子放置在任意指定的两个位置之间,并避免了接近障碍物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号