首页> 外文会议>IEEE International Conference on Plasma Science;International Conference on High-Power Particle Beams >Investigation of power balance in micro dielectric barrier glow discharge with ultra-high driving frequency
【24h】

Investigation of power balance in micro dielectric barrier glow discharge with ultra-high driving frequency

机译:超高驱动频率的微介电势垒辉光放电中的功率平衡研究

获取原文

摘要

Summary form only given. Recently, atmospheric pressure micro plasmas attract lots of interests for the useful applications such as industrial surface modification and bio-medical treatment. Among many plasma devices, a dielectric barrier discharge structure (DBDs) is widely used for the simplest device which can sustain the glow discharge with a sub-millimeter gap length with ultra-high frequency (UHF). However, it is not still well-known how to apply theoretical study for discharge characteristics to engineering optimization from RF to UHF in atmospheric pressure micro DBDs. In this study, a particle-in-cell simulation has been utilized to understand the helium and argon discharge characteristics of a planar micro dielectric barrier discharge in a 80 μm gap for the variation of driving frequency from 5 MHz to 500 MHz. The optimal condition for the efficient generation of high density plasmas with minimized power is obtained when the ratio of ion transit time to the RF period is about a quarter, so that both ion flux and secondary electron flux are accelerated in the same phase with the sheath potential. At this condition, the plasma density as well as the ion current is maximized because power loss by ionization is maximized among the total power loss. At higher frequency, the collisional electron heating increases by the induced bulk electric field, more frequent excitation and elastic collisions, and thus ionization per total power loss decreases while excitation power efficiency increases.
机译:仅提供摘要表格。近来,大气压微等离子体对于诸如工业表面改性和生物医学处理的有用应用吸引了很多兴趣。在许多等离子设备中,介电势垒放电结构(DBD)广泛用于最简单的设备,该设备可以维持亚毫米间隙长度的超高频(UHF)辉光放电。然而,如何将对放电特性的理论研究应用于大气压微型DBD中从RF到UHF的工程优化仍是未知的。在这项研究中,利用单元中的粒子模拟来了解在80μm的间隙中从5 MHz到500 MHz的驱动频率变化时,平面微电介质势垒放电的氦和氩放电特性。当离子传输时间与RF周期之比约为四分之一时,可获得以最小的功率高效生成高密度等离子体的最佳条件,从而使离子通量和二次电子通量都与鞘层在同一相中加速潜在。在这种条件下,由于在总功率损耗中由于电离引起的功率损耗最大,因此等离子体密度以及离子电流也达到了最大。在较高的频率下,通过感应的体电场,更频繁的激发和弹性碰撞,碰撞电子加热会增加,因此单位总功率损耗的电离会降低,而激发功率效率会提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号