首页> 外文会议>IEEE International Conference on Innovations in Intelligent Systems and Applications >Classification Performances Of Data Mining Clustering Algorithms For Remotely Sensed Multispectral Image Data
【24h】

Classification Performances Of Data Mining Clustering Algorithms For Remotely Sensed Multispectral Image Data

机译:遥感多光谱图像数据挖掘聚类算法的分类性能

获取原文

摘要

This study compares classification algorithm performances of data mining clustering algorithms for remotely sensed multispectral image data using WEKA data mining software. Clustering algorithm selection is very important for data mining classification method based clustering. The class attribute for remotely sensed multispectral image data is obtained from six different clustering algorithms for classification. Classification algorithm performances computed depending on the data labeling of six different clustering algorithms in terms of correctly classified instances and kappa statistics for seven different classification algorithms.A strategy is developed for selecting the best unsupervised clustering algorithm, among different clustering algorithms, giving the highest supervised classification accuracy in terms of correctly classified instances and kappa statistics for semi-supervised classification of remotely-sensed multispectral image data. The performances of seven semi-supervised classification methods assessed depending on six different unsupervised clustering algorithms for supervised classification of remotely sensed multispectral image data. This study determines data free clustering algorithms for classification.
机译:本研究使用WEKA数据挖掘软件比较了遥感多光谱图像数据的数据挖掘聚类算法的分类算法性能。聚类算法的选择对于基于聚类的数据挖掘分类方法非常重要。遥感多光谱图像数据的类属性是从六种不同的聚类算法中获得的。根据正确分类的实例和七种不同分类算法的kapp统计量,根据六种不同聚类算法的数据标签计算出分类算法的性能。开发了一种策略,在不同聚类算法中选择最佳无监督聚类算法,以提供最高监督正确分类的实例和Kappa统计信息对遥感多光谱图像数据进行半监督分类的分类精度。根据六种不同的非监督聚类算法对七种半监督分类方法的性能进行了评估,这些算法是对遥感多光谱图像数据进行监督分类的。这项研究确定了用于分类的无数据聚类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号