首页> 外文会议>IEEE International Conference on Electro/Information Technology >Image De-Noising Through Symmetric, Bell-Shaped, and Centered Weighted Median Filters Based Subband Decomposition
【24h】

Image De-Noising Through Symmetric, Bell-Shaped, and Centered Weighted Median Filters Based Subband Decomposition

机译:通过基于对称,钟形和居中加权中值滤波器的子带分解实现图像降噪

获取原文

摘要

Here, a novel image denoising algorithm that eliminates different type of noise from an image using median filter based subband decomposition. The benefit of sub-band decomposition using median transform over the wavelet decomposition method is that the nonlinear filters are not subject to Gibb's phenomenon which causes the ringing effects associated with the linear subband methods and they can be computed with low computational complexity. It has been experimentally observed that noisy coefficients have a higher value at the first scale of multiresolution analysis and later the value decreases in the subsequent scale and so on. Hence, we proposed to apply subsequently decreasing threshold on every single step of the multiresolution coefficients such that the de-noising method filters out the noise while preserving good image quality. A number of noisy images contaminated with different combinations of the Gaussian, Speckle and Salt and pepper noises are denoised by this new approach and compared using SNR measure with other wavelet denoising algorithms. The experimental results validate that the proposed algorithm outperforms the traditional wavelet decomposition method for noise removal.
机译:在这里,一种新颖的图像去噪算法可以使用基于中值滤波器的子带分解从图像中消除不同类型的噪声。与小波分解方法相比,使用中值变换进行子带分解的好处在于,非线性滤波器不会受到吉布斯现象的影响,吉布斯现象会导致与线性子带方法相关的振铃效应,并且可以以较低的计算复杂度进行计算。实验上已经观察到,在多分辨率分析的第一个尺度上,噪声系数具有较高的值,而在随后的尺度上,噪声系数具有减小的值,依此类推。因此,我们建议在多分辨率系数的每个单个步长上应用随后减小的阈值,以使降噪方法滤除噪声,同时保持良好的图像质量。通过这种新方法对许多被高斯,斑点,盐和胡椒噪声的不同组合污染的噪声图像进行噪声处理,并将其与其他小波去噪算法进行SNR比较。实验结果证明,该算法优于传统的小波分解方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号