【24h】

Personalizing Query Auto-Completion for Multi-Session Tasks

机译:个性化多会话任务的查询自动完成

获取原文

摘要

Query auto-completion (QAC) displays a list of completions that start with input characters and is integrated into modern search engines. The goal is not only to reduce typing effort but also to help users formulate their search intent. Most prior QAC models focus on ranking completions on the basis of query log, whether considered on a whole or split into sessions based on time. However, a great amount of queries are issued to accomplish complex search tasks which straddle several sessions, and no previous work investigates QAC problem in this scenario. To tackle this challenge, we propose a supervised framework for QAC personalization, where three levels of task-related factors are considered separately and synthetically, including history-level, session-level, and query-level. Experimental results on a real-world search log confirm that our learning to rank model significantly outperforms the competitive baselines and enables a more comprehensive understanding of users' search history.
机译:查询自动完成(QAC)显示以输入字符开头的完成列表,并已集成到现代搜索引擎中。目标不仅是减少打字工作量,而且还可以帮助用户制定其搜索意图。先前的大多数QAC模型都将重点放在基于查询日志的完成度排名上,无论是整体考虑还是根据时间划分为会话。但是,发出大量查询来完成跨越多个会话的复杂搜索任务,在这种情况下,以前的工作都没有调查QAC问题。为了应对这一挑战,我们提出了一个QAC个性化的受监管框架,该框架将与任务相关的因素的三个级别分别和综合考虑,包括历史级别,会话级别和查询级别。实际搜索日志中的实验结果证实,我们的排名模型学习明显优于竞争基准,并能够更全面地了解用户的搜索历史。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号