首页> 外文期刊>ACM transactions on Asian language information processing >Personalized Query Auto-Completion for Large-Scale POI Search at Baidu Maps
【24h】

Personalized Query Auto-Completion for Large-Scale POI Search at Baidu Maps

机译:在百度地图上为大型POI搜索​​的个性化查询自动完成

获取原文
获取原文并翻译 | 示例

摘要

Query auto-completion (QAC) is a featured function that has been widely adopted by many sub-domains of search. It can dramatically reduce the number of typed characters and avoid spelling mistakes. These merits of QAC are highlighted to improve user satisfaction, especially when users intend to type in a query on mobile devices. In this article, we will present our industrial solution to the personalized QAC for the point of interest (POI) search at Baidu Maps, a well-known Web mapping service on mobiles in China. The industrial solution makes a good tradeoff between the offline effectiveness of a novel neural learning model that we devised for feature generation and the online efficiency of an off-the-shelf learning to rank (LTR) approach for the real-time suggestion. Besides some practical lessons from how a real-world QAC system is built and deployed in Baidu Maps to facilitate a large number of users in searching tens of millions of POIs, we mainly explore two specific features for the personalized QAC function of the POI search engine: the spatial-temporal characteristics of POIs and the historically queried POIs of individual users.We leverage the large-volume POI search logs in Baidu Maps to conduct offline evaluations of our personalized QAC model measured by multiple metrics, including Mean Reciprocal Rank (MRR), Success Rate (SR), and normalized Discounted Cumulative Gain (nDCG). Extensive experimental results demonstrate that the personalized model enhanced by the proposed features can achieve substantial improvements (i.e., +3.29% MRR, +3.78% SR@1, +5.17% SR@3, +1.96% SR@5, and +3.62% nDCG@5). After deploying this upgraded model into the POI search engine at Baidu Maps for A/B testing online, we observe that some other critical indicators, such as the average number of keystrokes and the average typing speed at keystrokes in a QAC session, which are also related to user satisfaction, decrease as well by 1.37% and 1.69%, respectively. So the conclusion is that the two kinds of features contributed by us are quite helpful in personalized mapping services for industrial practice.
机译:查询自动完成(QAC)是一个特色的函数,这些功能已被许多搜索子域广泛采用。它可以大大减少键入字符的数量,避免拼写错误。突出显示QAC的这些优点以提高用户满意度,尤其是当用户打算在移动设备上键入查询时。在本文中,我们将在百度地图上向百度地图(POI)搜索的人的兴趣点(POI)搜索,这是一个在中国的百度地图中的个人化QAC。工业品解决方案在新型神经学习模型的离线效力之间进行了良好的权衡,我们设计为特征生成和现成的现成学习的在线效率,以获得实时建议的排名(LTR)方法。除了从百度地图建立和部署的现实世界QAC系统的一些实用课程,以方便大量用户搜索数百万的POI,我们主要探索POI搜索​​引擎的个性化QAC功能的两个特定功能:POI的空间时间特征和个人用户的历史上QUIS。我们利用了百度地图的大卷POI搜索​​日志,以便通过多元度量测量的个性化QAC模型进行离线评估,包括平均互惠级别(MRR) ,成功率(SR),并标准化折扣累积增益(NDCG)。广泛的实验结果表明,所提出的特征增强的个性化模型可以实现大量改进(即+ 3.29%MRR,+ 3.78%SR @ 1,+ 5.17%SR @ 3,+ 1.96%SR @ 5,+ 3.62% ndcg @ 5)。在将此升级的模型部署到POI搜索​​引擎中,在百度搜索引擎在线进行A / B测试,我们观察到其他一些关键指标,例如QAC会话中的击键中的平均击键数和平均键入速度,也是如此与用户满意度有关,分别降低1.37%和1.69%。所以结论是,美国贡献的两种特征在于为工业实践的个性化绘图服务而言非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号