首页> 外文会议>IEEE International Conference on Artificial Intelligence and Knowledge Engineering >Towards Exploring Literals to Enrich Data Linking in Knowledge Graphs
【24h】

Towards Exploring Literals to Enrich Data Linking in Knowledge Graphs

机译:旨在探索文字以丰富知识图中的数据链接

获取原文

摘要

Knowledge graph completion is still a challenging solution that uses techniques from distinct areas to solve many different tasks. Most recent works, which are based on embedding models, were conceived to improve an existing knowledge graph using the link prediction task. However, even considering the ability of these solutions to solve other tasks, they did not present results for data linking, for example. Furthermore, most of these works focuses only on structural information, i.e., the relations between entities. In this paper, we present an approach for data linking that enrich entity embeddings in a model with their literal information and that do not rely on external information of these entities. The key aspect of this proposal is that we use a blocking scheme to improve the effectiveness of the solution in relation to the use of literals. Thus, in addition to the literals from object elements in a triple, we use other literals from subjects and predicates. By merging entity embeddings with their literal information it is possible to extend many popular embedding models. Preliminary experiments were performed on real-world datasets and our solution showed competitive results to the performance of the task of data linking.
机译:知识图完成仍然是一个具有挑战性的解决方案,它使用来自不同领域的技术来解决许多不同的任务。构想了基于嵌入模型的最新作品,以使用链接预测任务来改进现有知识图。但是,即使考虑这些解决方案解决其他任务的能力,例如,它们也没有给出数据链接的结果。此外,这些作品大多只关注结构信息,即实体之间的关系。在本文中,我们提出了一种数据链接方法,该方法利用其文字信息丰富了模型中的实体嵌入,并且不依赖于这些实体的外部信息。该提议的关键方面是我们使用阻塞方案来提高解决方案相对于文字使用的有效性。因此,除了三元组中来自对象元素的文字之外,我们还使用其他来自主语和谓语的文字。通过将实体嵌入与其文字信息合并,可以扩展许多流行的嵌入模型。在真实数据集上进行了初步实验,我们的解决方案在执行数据链接任务方面显示出了颇具竞争力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号