首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >A study of hyperplane-based vector quantization for distributed estimation
【24h】

A study of hyperplane-based vector quantization for distributed estimation

机译:基于超平面的矢量量化分布式估计研究

获取原文

摘要

We consider the problem of distributed estimation of a vector parameter in wireless sensor networks (WSNs). Due to stringent power and bandwidth constraints, vector quantization is performed at each sensor to convert its local noisy vector observation into one bit of information. The one bit quantized data is then sent to the fusion center (FC), where a final estimate of the vector parameter is formed. The vector quantization problem is studied in such a distributed estimation context. Specifically, our study focuses on a class of hyperplane-based vector quantizers which linearly convert the observation vector into a scalar by using a compression vector and then carry out a scalar quantization. Under the framework of the Cramér-Rao bound (CRB) analysis, we study the choice of the quantization thresholds and the design of the compression vectors.
机译:我们考虑无线传感器网络(WSNs)中矢量参数的分布式估计问题。由于功率和带宽的严格限制,在每个传感器上执行矢量量化,以将其局部噪声矢量观测值转换为一位信息。然后将一位量化的数据发送到融合中心(FC),在融合中心形成矢量参数的最终估计值。在这样的分布式估计上下文中研究矢量量化问题。具体而言,我们的研究集中在基于超平面的矢量量化器上,这些矢量量化器通过使用压缩矢量将观察矢量线性转换为标量,然后进行标量量化。在Cramér-Rao界(CRB)分析的框架下,我们研究了量化阈值的选择和压缩向量的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号