首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Identifying reliable subnetwork markers in protein-protein interaction network for classification of breast cancer metastasis
【24h】

Identifying reliable subnetwork markers in protein-protein interaction network for classification of breast cancer metastasis

机译:在蛋白质-蛋白质相互作用网络中确定可靠的子网标记,用于乳腺癌转移的分类

获取原文

摘要

Due to the inherent measurement noise in microarray experiments, heterogeneity across samples, and limited sample size, it is often hard to find reliable gene markers for classification. For this reason, several studies proposed to analyze the expression data at the level of groups of functionally related genes such as pathways. One practical problem of these pathway-based approaches is the limited coverage of genes by known pathways. To overcome this problem, we propose a new method for identifying effective subnetwork markers by overlaying the gene expression data with a genome-scale protein-protein interaction network. Experimental results on two independent breast cancer datasets show that the subnetwork markers lead to more accurate classification of breast cancer metastasis and are more reproducible than both gene and pathway markers.
机译:由于微阵列实验中固有的测量噪声,样品之间的异质性和有限的样品量,通常很难找到可靠的基因标记进行分类。因此,一些研究提出在功能相关基因(例如途径)的组水平上分析表达数据。这些基于途径的方法的一个实际问题是已知途径对基因的覆盖范围有限。为了克服这个问题,我们提出了一种通过将基因表达数据与基因组规模的蛋白质-蛋白质相互作用网络重叠来识别有效子网络标记的新方法。在两个独立的乳腺癌数据集上的实验结果表明,子网标记可导致乳腺癌转移的分类更加准确,并且比基因和途径标记均具有更高的可重复性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号