首页> 外文会议>High Performance Embedded Architectures and Compilers; Lecture Notes in Computer Science; 4367 >Reducing Branch Misprediction Penalties Via Adaptive Pipeline Scaling
【24h】

Reducing Branch Misprediction Penalties Via Adaptive Pipeline Scaling

机译:通过自适应管道缩放减少分支错误重罚

获取原文
获取原文并翻译 | 示例

摘要

Pipeline scaling provides an attractive solution for increasingly serious branch misprediction penalties within deep pipeline processor. In this paper we investigate Adaptive Pipeline Scaling (APS) techniques that are related to reducing branch misprediction penalties. We present a dual supply-voltage architecture framework that can be efficiently exploited in an deep pipeline processor to reduce pipeline depth depending on the confidence level of branches in pipeline. We also propose two techniques, Dual Path Index Table (DPIT) and Step-By-Step (STEP) manner, that increase the efficiency for pipeline scaling . With these techniques, we then show that APS not only provides a fast branch misprediction recovery, but also speeds up the resolve of mispredicted branch. The evaluation of APS in a 13-stage superscalar processor with benchmarks from SPEC2000 applications shows a performance improvement (between 3%-12%, average 8%) over baseline processor that does not exploit APS.
机译:管道扩展为深​​层管道处理器中日益严重的分支错误预测惩罚提供了一种有吸引力的解决方案。在本文中,我们研究了与减少分支预测错误的惩罚有关的自适应流水线缩放(APS)技术。我们提出了一种双电源电压架构框架,可以根据管道中分支的置信度来有效地利用深度管道处理器来减少管道深度。我们还提出了两种技术,即双路径索引表(DPIT)和逐步(STEP)方式,它们可以提高流水线缩放的效率。然后,使用这些技术,我们证明APS不仅可以提供快速的分支错误预测恢复,而且可以加快错误预测分支的解决速度。在具有SPEC2000应用程序基准的13级超标量处理器中对APS的评估显示,与不使用APS的基准处理器相比,其性能有所提高(3%-12%,平均8%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号