首页> 外文会议>Genetic programming. >Bayesian Network Structure Learning from Limited Datasets through Graph Evolution
【24h】

Bayesian Network Structure Learning from Limited Datasets through Graph Evolution

机译:通过图进化从有限数据集中学习贝叶斯网络结构

获取原文
获取原文并翻译 | 示例

摘要

Bayesian networks are stochastic models, widely adopted to encode knowledge in several fields. One of the most interesting features of a Bayesian network is the possibility of learning its structure from a set of data, and subsequently use the resulting model to perform new predictions. Structure learning for such models is a NP-hard problem, for which the scientific community developed two main approaches: score-and-search metaheuristics, often evolutionary-based, and dependency-analysis deterministic algorithms, based on stochastic tests. State-of-the-art solutions have been presented in both domains, but all methodologies start from the assumption of having access to large sets of learning data available, often numbering thousands of samples. This is not the case for many real-world applications, especially in the food processing and research industry. This paper proposes an evolutionary approach to the Bayesian structure learning problem, specifically tailored for learning sets of limited size. Falling in the category of score-and-search techniques, the methodology exploits an evolutionary algorithm able to work directly on graph structures, previously used for assembly language generation, and a scoring function based on the Akaike Information Criterion, a well-studied metric of stochastic model performance. Experimental results show that the approach is able to outperform a state-of-the-art dependency-analysis algorithm, providing better models for small datasets.
机译:贝叶斯网络是随机模型,广泛用于对多个领域的知识进行编码。贝叶斯网络最有趣的特征之一是可以从一组数据中学习其结构,然后使用所得模型执行新的预测。这种模型的结构学习是一个NP难题,科学界为此开发了两种主要方法:基于随机测试的计分和搜索元启发式算法(通常是基于进化的)和依赖分析确定性算法。在这两个领域中都提供了最新的解决方案,但是所有方法都从以下假设开始:可以访问大量可用的学习数据集,通常有数千个样本。对于许多实际应用而言并非如此,尤其是在食品加工和研究行业中。本文针对贝叶斯结构学习问题提出了一种进化方法,专门针对有限大小的学习集量身定制。在评分和搜索技术类别中,该方法利用了一种进化算法,该算法能够直接在先前用于汇编语言生成的图结构上工作,并且基于基于Akaike信息准则(一种经过充分研究的度量)的评分功能随机模型的性能。实验结果表明,该方法能够胜过最新的依赖关系分析算法,为小型数据集提供更好的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号