首页> 外文会议>Fourth International Workshop on Advanced Computational Intelligence >Nondestructive inspection of melon's sugar content based on impedance characteristics
【24h】

Nondestructive inspection of melon's sugar content based on impedance characteristics

机译:基于阻抗特性的瓜糖含量的无损检测

获取原文
获取原文并翻译 | 示例

摘要

The objective of the study is to establish a model between the impedance characteristics and the sugar content of internal quality index of melons. The equivalent series resistor and equivalent series capacitor of melon are measured over the frequency from 1 KHz to 100 KHz by a LCR meter and an airtight shielding case. Then the impedance is calculated. Through principal component analysis (PCA), four principal components are selected to model for back propagation neural network (BPNN) optimized by genetic algorithm (GA). Comparing this method with BPNN and partial least squares (PLS), it is obviously showed that BPNN optimized by GA model is reliable and practicable. The inspecting results are assessed by correlation coefficient R=0.8413, and the root mean squares error of prediction RMSEP=0.762. A method is proposed to detect melon''s sweetness.
机译:该研究的目的是建立一个阻抗特性与甜瓜内部质量指标含糖量之间的模型。瓜等效串联电阻和等效串联电容器由LCR表和气密性屏蔽盒在1 KHz至100 KHz的频率范围内测量。然后计算阻抗。通过主成分分析(PCA),选择了四个主要成分对通过遗传算法(GA)优化的反向传播神经网络(BPNN)进行建模。将该方法与BPNN和偏最小二乘(PLS)进行比较,显然表明,用GA模型优化的BPNN是可靠和可行的。通过相关系数R = 0.8413评估检验结果,预测RMSEP的均方根误差= 0.762。提出了一种检测甜瓜甜度的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号