首页> 外文会议>Foundations of software science and computational structures >Concurrency, σ-Alebras, and Probabilistic Fairness
【24h】

Concurrency, σ-Alebras, and Probabilistic Fairness

机译:并发,σ-Alebras和概率公平

获取原文
获取原文并翻译 | 示例

摘要

We extend previous constructions of probabilities for a prime event structure E by allowing arbitrary confusion. Our study builds on results related to fairness in event structures that are of interest per se. Executions of E are captured by the set Ω of maximal configurations. We show that the information collected by observing only fair executions of E is confined in some σ-algebra S_0, contained in the Borel σ-algebra S of Ω. Equality S_0 = S holds when confusion is finite (formally, for the class of locally finite event structures), but inclusion So is contained in S is strict in general. We show the existence of an increasing chain S_0 is contained in S_1 is contained in S_2 is contained in ... of sub-σ-algebras of S that capture the information collected when observing executions of increasing unfairness. We show that, if the event structure unfolds a 1-safe net, then unfairness remains quantitatively bounded, that is, the above chain reaches S in finitely many steps.rnThe construction of probabilities typically relies on a Kolmogorov extension argument. Such arguments can achieve the construction of probabilities on the σ-algebra S_0 only, while one is interested in probabilities defined on the entire Borel σ-algebra S. We prove that, when the event structure unfolds a 1-safe net, then unfair executions all belong to some set of S_0 of zero probability. Whence S_0=S modulo 0 always holds, whereas S_0≠ S in general. This yields a new construction of Markovian probabilistic nets, carrying a natural interpretation that "unfair executions possess zero probability".
机译:通过允许任意混淆,我们扩展了主要事件结构E的概率的先前构造。我们的研究建立在与事件结构公平性相关的结果上,而这些结果本身就是令人感兴趣的。 E的执行由最大配置的设定Ω捕获。我们表明,仅通过观察E的公平执行而收集的信息被限制在Ω的Borelσ代数S中包含的某些σ代数S_0中。等式S_0 = S在混淆是有限的情况下成立(从形式上来说,对于局部有限事件结构的类),但是S中包含的So通常是严格的。我们表明存在递增链S_0包含在S_1中,包含S_2包含在S的子σ代数中,这些子代数捕获S时观察到的不公平执行情况所收集的信息。我们证明,如果事件结构展开一个1安全网,则不公平性在数量上仍然有限,也就是说,上述链条在有限的多个步骤中到达S。这样的论点只能在σ-代数S_0上实现概率的构造,而人们对整个Borelσ-代数S上定义的概率感兴趣。我们证明,当事件结构展开为1安全网时,则执行不公平全部属于零概率的S_0集。 S_0 = S模0总是成立,而S_0≠S通常。这产生了马尔可夫概率网的新结构,带有自然的解释,即“不公平的执行具有零概率”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号