首页> 外文会议>Foundations of software science and computational structures >Differential Calculus with Imprecise Input and Its Logical Framework
【24h】

Differential Calculus with Imprecise Input and Its Logical Framework

机译:输入不精确的微积分及其逻辑框架

获取原文
获取原文并翻译 | 示例

摘要

We develop a domain-theoretic Differential Calculus for locally Lipschitz functions on finite dimensional real spaces with imprecise input/output. The inputs to these functions are hyper-rectangles and the outputs are compact real intervals. This extends the domain of application of Interval Analysis and exact arithmetic to the derivative. A new notion of a tie for these functions is introduced, which in one dimension represents a modification of the notion previously used in the one-dimensional framework. A Scott continuous sub-differential for these functions is then constructed, which satisfies a weaker form of calculus compared to that of the Clarke sub-gradient. We then adopt a Program Logic viewpoint using the equivalence of the category of stably locally compact spaces with that of semi-strong proximity lattices. We show that given a localic approximable mapping representing a locally Lipschitz map with imprecise input/output, a localic approximable mapping for its sub-differential can be constructed, which provides a logical formulation of the sub-differential operator.
机译:我们为输入/输出不精确的有限维实空间上的局部Lipschitz函数开发了一种域理论微分算法。这些函数的输入是超矩形,输出是紧凑的实数区间。这将区间分析和精确算术的应用范围扩展到导数。引入了针对这些功能的联系的新概念,该概念在一个维度上表示一维框架中先前使用的概念的修改。然后构造这些函数的Scott连续次微分,与Clarke次梯度相比,它满足较弱的演算形式。然后,我们采用程序逻辑观点,即使用局部稳定紧凑空间的类别与半强邻近格的类别的等效性。我们表明,给定表示具有不精确输入/输出的局部Lipschitz映射的局部可逼近映射,可以构造其次微分的局部可逼近映射,这提供了次级微分算子的逻辑表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号