首页> 外文期刊>Journal of logic and computation >Differential and integral calculus for logical operations. A matrix-vector approach
【24h】

Differential and integral calculus for logical operations. A matrix-vector approach

机译:用于逻辑运算的微分和积分。矩阵向量法

获取原文
获取原文并翻译 | 示例

摘要

A variety of problems emerged investigating electronic circuits, computer devices and cellular automata motivated a number of attempts to create a differential and integral calculus for Boolean functions. In the present article, we extend this kind of calculus in order to include the semantic of classical logical operations. We show that this extension to logics is strongly helped if we submerge the elementary logical calculus in a matrix-vector formalism that naturally includes a kind of fuzzy-logic. In this way, guided by the laws of matrix algebra, we can construct compact representations for the derivatives and the integrals of logical functions. Inside this semantic-algebraic calculus, we obtain expressions for the derivatives of some of the basic logical operations and show the general way to obtain the derivatives of any well-formed formula of propositional calculus. We show that some of the basic tautologies (Excluded middle, Modus ponens, Hypothetical syllogism) are members of a kind of hierarchical system linked by the differentiation algorithm. In addition using the logical derivatives we show that relatively complex formulas can collapse in simple expressions that reveal clearly their hidden logical meaning. The search for the antiderivatives produces naturally an integral calculus. Within this logical formalism an indefinite integral can always be found for any logical expression. Moreover, particular integrals can be constructed based on detachment properties that lead to logical expressions of growing complexity. We show that these particular integrals have some similarities with the 'generalizing deduction' procedures investigated by Lukasiewicz.
机译:研究电子电路,计算机设备和细胞自动机的各种问题引起了为创建布尔函数的微分和积分计算的许多尝试。在本文中,我们扩展了这种演算,以便包括经典逻辑运算的语义。我们证明,如果我们将基本逻辑演算淹没在自然包含一种模糊逻辑的矩阵向量形式中,则对逻辑的这种扩展将有很大帮助。这样,在矩阵代数定律的指导下,我们可以构造逻辑函数的导数和积分的紧凑表示。在这个语义代数演算中,我们获得一些基本逻辑运算的导数的表达式,并展示了获取命题演算的任何格式正确的公式的导数的一般方法。我们证明了一些基本的重言式(排除中间,模态,假想三段论)是由区分算法链接的一种等级系统的成员。除了使用逻辑导数,我们还显示了相对复杂的公式可能会以简单的表达式折叠,从而清楚地揭示其隐藏的逻辑含义。寻找抗衍生物自然会产生积分。在这种逻辑形式主义中,对于任何逻辑表达式总是可以找到不定积分。而且,可以基于导致越来越复杂的逻辑表达的分离特性来构造特定的积分。我们表明,这些特定的积分与Lukasiewicz研究的“广义演绎”程序有一些相似之处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号