首页> 外文会议>European Signal Processing Conference(EUSIPCO 2004) vol.3; 20040906-10; Vienna(AT) >GENERALIZED STOCHASTIC PRINCIPLE FOR MICROPHONE ARRAY SPEECH ENHANCEMENT AND APPLICATIONS TO CAR ENVIRONMENTS
【24h】

GENERALIZED STOCHASTIC PRINCIPLE FOR MICROPHONE ARRAY SPEECH ENHANCEMENT AND APPLICATIONS TO CAR ENVIRONMENTS

机译:麦克风阵列语音增强的广义随机原理及其在汽车环境中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present novel solutions for microphone array speech enhancement systems that intelligently use the rnul-tipath environment to enhance signal corning from a desired location. We obtain a statistical principle that explains previously known factorization results of optimal bearnformers, and proves a similar factorization holds for other new optimal estimators. Our solution requires a low computational load, and can be deployed on most of the platforms. We present speech recognition rates on real data, and compare a stereo versus a mono solution on this database.
机译:在本文中,我们为麦克风阵列语音增强系统提供了新颖的解决方案,该系统智能地使用rnti-tipath环境来增强来自所需位置的信号康宁。我们获得了一个统计原理,可以解释先前已知的最佳bearnformers的因式分解结果,并证明其他新的最佳估计量也具有类似的因式分解。我们的解决方案需要低计算量,并且可以部署在大多数平台上。我们提供了真实数据的语音识别率,并在此数据库上比较了立体声和单声道解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号