首页> 外文会议>European signal processing conference;EUSIPCO 2011 >A CO-TRAINING APPROACH TO AUTOMATIC FACE RECOGNITION
【24h】

A CO-TRAINING APPROACH TO AUTOMATIC FACE RECOGNITION

机译:自动识别人脸的共同训练方法

获取原文

摘要

Semi-supervised face recognition using both labelled and unlabelled data has received considerable interest in recent years. Co-training is one of the most well-known semi-supervised learning methods, but its application in face recognition almost remains unexplored because its assumption of conditional independence can be rarely satisfied between two facial features. However, even if two facial features are not completely independent, their different characteristics produce a so-called 'classification margin' between two classifiers based on them, and hence there is the possibility of mutual training. In this paper, we report a semi-supervised face recognition algorithm which applies co-training on two classifiers based on Linear Discriminant Analysis (LDA) and Local Binary Patterns (LBP) features respectively.Experimental results show not only that the proposed co-training algorithm significantly improves the recognition accuracy over supervised methods using only labelled training data, but also demonstrates the superiority of co-training over self-training methods which only use one facial feature.
机译:近年来,使用标记和未标记数据的半监督人脸识别已经引起了人们的极大兴趣。协同训练是最著名的半监督学习方法之一,但是由于几乎不能满足两个面部特征之间的条件独立性假设,因此在人脸识别中的应用几乎尚未得到开发。然而,即使两个面部特征不是完全独立的,它们的不同特征也会在基于它们的两个分类器之间产生所谓的“分类余量”,因此存在相互训练的可能性。在本文中,我们报告了一种半监督人脸识别算法,该算法分别基于线性判别分析(LDA)和局部二值模式(LBP)特征对两个分类器进行了联合训练。实验结果不仅表明所提出的联合训练与仅使用标记训练数据的监督方法相比,该算法显着提高了识别方法的识别准确性,而且还证明了联合训练优于仅使用一个面部特征的自我训练方法的优越性。

著录项

  • 来源
  • 会议地点 Barcelona(ES);Barcelona(ES)
  • 作者单位

    Multimedia Communication Department EURECOM 2229 Route des Cretes BP 193 F-06560 Sophia-Antipolis Cedex France email:zhaox@eurecom.fr;

    Multimedia Communication Department EURECOM 2229 Route des Cretes BP 193 F-06560 Sophia-Antipolis Cedex France evans@eurecom.fr;

    Multimedia Communication Department EURECOM 2229 Route des Cretes BP 193 F-06560 Sophia-Antipolis Cedex France dugelay@eurecom.fr;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号