首页> 外文期刊>Concurrency and computation: practice and experience >A co-training based entity recognition approach for cross-disease clinical documents
【24h】

A co-training based entity recognition approach for cross-disease clinical documents

机译:基于共同训练的跨疾病临床文档实体识别方法

获取原文
获取原文并翻译 | 示例

摘要

Entity recognition plays an important role in building the electronic medical records (EMRs)based medical knowledge graph,which is significant for buildingClinical decision support (CDS) system. Cross-disease clinical documents are context-related and have different interrelated semantic structures, which bring challenges for entity recognition using traditional methods. In order to solve these problems, this paper proposes a co-training based entity recognition approach for cross-disease clinical documents. In this model, we first build partial annotation corpus of the single disease using dependency syntax analysis and the medical statement rule unifies. Then, according to the partial annotation corpus of different diseases, the sentence level features are extracted through the Bi-LSTM layer with memory unit and CRF methods, which optimize the whole sequence and improve the combination probability of sequence labels. Finally, the results with higher confidence are selected by cross feedback to label the corpus,which enlarges the size of corpus and improves the accuracy of the document entity recognition. The experiment result proves the availability and high efficiency of our method.
机译:实体识别在基于电子病历(EMR)的医学知识图的构建中起着重要作用,这对于构建临床决策支持(CDS)系统具有重要意义。跨疾病临床文档与上下文相关,并且具有不同的相互关联的语义结构,这给使用传统方法进行实体识别带来了挑战。为了解决这些问题,本文提出了一种基于交叉训练的跨疾病临床文献识别方法。在此模型中,我们首先使用依存句法分析构建单个疾病的部分注释语料库,然后将医疗声明规则统一起来。然后,根据不同疾病的部分注释语料库,利用存储单元和CRF方法通过Bi-LSTM层提取句子层次特征,优化了整个序列,提高了序列标签的组合概率。最后,通过交叉反馈选择具有较高置信度的结果来标记语料库,从而扩大了语料库的大小并提高了文档实体识别的准确性。实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号