首页> 外文期刊>Journal of algorithms & computational technology >Automatic Image Annotation Based on Co-training
【24h】

Automatic Image Annotation Based on Co-training

机译:基于协同训练的自动图像标注

获取原文
获取原文并翻译 | 示例

摘要

Automatic image annotation is a critical and challenging problem in pattern recognition and image understanding areas. There are some problems in existing automatic image annotation areas. For example, the size of unlabeled data is much larger than the labeled data. Besides, most image annotation models can only use one kind of image segmentation strategy and certain image description method. According to the above problems, an automatic image annotation model based on Co-training is . proposed. In this model, four independent feature properties are constructed and then four corresponding sub-classifiers are built. In this way, different image segmentation strategies and feature representation methods can be integrated into a unified framework. An adaptive algorithm based on vote and consistency is proposed to extend the training dataset. The proposed method use Co-training algorithm and mass unlabeled data to improve the performance of automatic image annotation. Experiments conducted on Corel 5 K dataset verify the effectiveness of proposed method.
机译:在图案识别和图像理解领域,自动图像注释是一个至关重要的挑战性问题。现有的自动图像注释区域中存在一些问题。例如,未标记数据的大小比标记数据大得多。此外,大多数图像标注模型只能使用一种图像分割策略和某些图像描述方法。针对上述问题,提出了一种基于协同训练的自动图像标注模型。建议。在该模型中,构建了四个独立的特征属性,然后构建了四个对应的子分类器。这样,可以将不同的图像分割策略和特征表示方法集成到一个统一的框架中。提出了一种基于投票和一致性的自适应算法来扩展训练数据集。所提出的方法使用协同训练算法和大量的未标记数据,以提高自动图像标注的性能。在Corel 5 K数据集上进行的实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号