首页> 外文会议>European Conference on Evolutionary Computation in Combinatorial Optimization >A Binary Algebraic Differential Evolution for the MultiDimensional Two-Way Number Partitioning Problem
【24h】

A Binary Algebraic Differential Evolution for the MultiDimensional Two-Way Number Partitioning Problem

机译:多维两维数分配问题的二进制代数微分演化

获取原文

摘要

This paper introduces MADEB, a Memetic Algebraic Differential Evolution algorithm for the Binary search space. MADEB has been applied to the Multidimensional Two-Way Number Partitioning Problem (MDTWNPP) and its main components are the binary differential mutation operator and a variable neighborhood descent procedure. The binary differential mutation is a concrete application of the abstract algebraic framework for the binary search space. The variable neighborhood descent is a local search procedure specifically designed for MDTWNPP. Experiments have been held on a widely accepted benchmark suite and MADEB is experimentally compared with respect to the current state-of-the-art algorithms for MDTWNPP. The experimental results clearly show that MADEB is the new state-of-the-art algorithm in the problem here investigated.
机译:本文介绍了一种针对二元搜索空间的模因代数微分进化算法MADEB。 MADEB已应用于多维双向数分配问题(MDTWNPP),其主要组成部分是二进制微分变异算子和可变邻域下降过程。二进制微分变异是二进制代数搜索空间的抽象代数框架的具体应用。可变邻域下降是专门为MDTWNPP设计的本地搜索过程。实验已在广泛接受的基准套件上进行,并且将MADEB与MDTWNPP的最新算法进行了实验比较。实验结果清楚地表明,在研究的问题中,MAEDB是最新的最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号