首页> 外文期刊>Expert systems with applications >An improved memetic algebraic differential evolution for solving the multidimensional two-way number partitioning problem
【24h】

An improved memetic algebraic differential evolution for solving the multidimensional two-way number partitioning problem

机译:一种改进的迭代代数差分演进,用于解决多维双向数字分区问题

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a novel and effective evolutionary algorithm for the challenging combinatorial optimization problem known as Multidimensional Two-Way Number Partitioning Problem (MDTWNPP). Since the MDTWNPP has been proven to be NP-hard, in the recent years, it has been increasingly addressed by means of meta-heuristic approaches. Nevertheless, previous proposals in literature do not make full use of critical problem information that may improve the effectiveness of the search. Here, we bridge this gap by designing an improved Memetic Algebraic Differential Evolution (iMADEB) algorithm that incorporates critical information about the problem. In particular, iMADEB evolves a population of candidate local optimal solutions by adopting three key design concepts: a novel non-redundant bit-string representation which maps population individuals one-to-one to MDTWNPP solutions, a smoother local search operator purposely designed for the MDTWNPP landscapes, and a self-adaptive algebraic differential mutation scheme built on the basis of the Le ' vy flight concept which automatically regulates the exploration-exploitation trade-off of the search. Computational experiments have been conducted on a widely accepted benchmark suite for the MDTWNPP with a twofold purpose: analyzing the robustness of iMADEB and compare its effectiveness with respect to the state-of-the-art approaches to date for the MDTWNPP. The experimental results provide important indications about iMADEB robustness and, most importantly, clearly show that iMADEB is the new state-of-the-art algorithm for the MDTWNPP.
机译:在本文中,我们提出了一种新颖且有效的进化算法,用于具有挑战性的组合优化问题,称为多维双向编号分区问题(MDTWNPP)。由于MDTWNPP已被证明是NP - 艰难的,近年来,通过元启发式方法越来越多地解决。尽管如此,文学中的先前建议不会充分利用可能提高搜索有效性的关键问题信息。在这里,我们通过设计一种改进的迭代代数差分演进(IMADEB)算法来弥合有关问题的关键信息来弥合该差距。特别是,通过采用三个关键设计理念MDTWNPP景观和自适应代数差异突变方案,基于LE'VY飞行概念构建,自动调节搜索的勘探开采权衡。已经在具有双重目的的MDTWNPP广泛接受的基准套件上进行了计算实验:分析IMADEB的稳健性,并比较其对MDTWNPP的最新方法的效力。实验结果提供了关于IMADEB稳健性的重要迹象,最重要的是明确表明IMADEB是用于MDTWNPP的新型最先进的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号