首页> 外文会议>EDBT/ICDT workshops >Text-To-Query: dynamically building structured analytics to illustrate textual content
【24h】

Text-To-Query: dynamically building structured analytics to illustrate textual content

机译:文本到查询:动态构建结构化分析以说明文本内容

获取原文

摘要

Successfully structuring information in databases, OLAP cubes, and XML is a crucial element in managing data nowadays. However this process brought new challenges to usability. It is difficult for users to switch from common communication means using natural language to data models (e.g., database schemas) that are hard to work with and understand, especially for occasional users. This important issue is under intense scrutiny in the database community (e.g., keyword search over databases and query relaxation techniques), and the information extraction community (e.g., linking structured and unstructured data). However, there is still no comprehensive solution that automatically generates an OLAP (Online Analytical Processing) query and chooses a visualization based on textual content with high precision. We present such a method. We discuss how to dynamically generate interpretations of a textual content as an OLAP query, select the best visualization, and retrieve on the fly corresponding data from a data warehouse. To provide the most relevant aggregation results, we consider the user's actual context, described by a document's content. Moreover we provide a prototypical implementation of our method, the Text-To-Query system (T2Q) and show how T2Q can be successfully applied to an enterprise scenario as an extension for an office application.
机译:在数据库,OLAP多维数据集和XML中成功构造信息是当今管理数据的关键要素。但是,此过程给可用性带来了新的挑战。用户很难从使用自然语言的通用通信方式切换到难以使用和理解的数据模型(例如,数据库模式),尤其是对于偶尔使用的用户。在数据库社区(例如,通过数据库进行关键字搜索和查询放松技术)以及信息提取社区(例如,链接结构化和非结构化数据)中,这一重要问题受到了严格的审查。但是,仍然没有全面的解决方案可以自动生成OLAP(在线分析处理)查询,并根据文本内容高精度选择可视化效果。我们提出了这样一种方法。我们讨论了如何动态生成文本内容的解释(作为OLAP查询),选择最佳可视化效果以及动态地从数据仓库中检索相应的数据。为了提供最相关的汇总结果,我们考虑了用户的实际上下文,由文档的内容描述。此外,我们提供了方法的原型实现,即文本查询系统(T2Q),并展示了T2Q如何作为办公应用程序的扩展成功地应用于企业场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号