首页> 外文会议>Distributed computing, artificial intelligence, Bioinformatics, soft computing, and ambient assisted living >Control of Mobile Robot Considering Actuator Dynamics with Uncertainties in the Kinematic and Dynamic Models
【24h】

Control of Mobile Robot Considering Actuator Dynamics with Uncertainties in the Kinematic and Dynamic Models

机译:运动和动力学模型中考虑执行器动力学不确定性的移动机器人控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a trajectory tracking control for a nonholonomic mobile robot by the integration of a neural kinematic controller (NKC) and neural dynamic controller (NDC) is investigated, where the wheel actuator (e.g., dc motor) dynamics is integrated with mobile robot dynamics and kinematics so that the actuator input voltages are the control inputs, as well as both the kinematic and dynamic models contains parametric and/or nonparametric uncertainties. The proposed neural controller (PNC) is constituted of the NKC and the NDC, and were designed by use of a modelling technique of Gaussian radial basis function neural networks (RBFNNs). The NKC is applied to compensate the uncertainties in the kinematic parameters of the mobile robot. The NDC, based on the sliding mode theory, is applied to compensate the mobile robot dynamics, and parametric and/or nonparametric uncertainties. Also, the PNC are not dependent of the mobile robot kinematics and dynamics neither require the offline training process. Stability analysis with basis on Lyapunov theory and numerical simulation is provided to show the effectiveness of the PNC.
机译:本文研究了通过集成神经运动控制器(NKC)和神经动力学控制器(NDC)的非完整移动机器人的轨迹跟踪控制,其中轮驱动器(例如,直流电动机)动力学与移动机器人集成在一起动力学和运动学特性,以使执行器输入电压成为控制输入,并且运动学和动力学模型都包含参数和/或非参数不确定性。所提出的神经控制器(PNC)由NKC和NDC组成,并使用高斯径向基函数神经网络(RBFNN)的建模技术进行设计。 NKC用于补偿移动机器人运动学参数的不确定性。 NDC基于滑模理论,用于补偿移动机器人的动力学以及参数和/或非参数不确定性。同样,PNC也不依赖于移动机器人的运动学,动力学也不需要脱机训练过程。提供了基于李雅普诺夫理论和数值模拟的稳定性分析,以证明PNC的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号