首页> 外文会议>Distributed computing, artificial intelligence, Bioinformatics, soft computing, and ambient assisted living >Segregating Confident Predictions of Chemicals' Properties for Virtual Screening of Drugs
【24h】

Segregating Confident Predictions of Chemicals' Properties for Virtual Screening of Drugs

机译:分离用于化学虚拟药物筛选的化学性质的可信预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a methodology for evaluating the confidence in the prediction of a physicochemical or biological property. Identifying unreliable compounds' predictions is crucial for the modern drug discovery process.This task is accomplished by the combination of the method of prediction with a self-organizing map. In this way, the method is able to segregate unconfident predictions as well as confident predictions. We applied the method to four different data sets, and we obtained significant differences in the average predictions of our segregation. This approach constitutes a novel way for evaluating confidence, since it not only looks for extrapolation situations but also it identifies interpolation problems.
机译:在本文中,我们提出了一种方法,用于评估对物理化学或生物学性质的预测的置信度。识别不可靠化合物的预测对于现代药物发现过程至关重要,该任务是通过将预测方法与自组织图结合起来完成的。以这种方式,该方法能够分离不确定的预测和可信的预测。我们将该方法应用于四个不同的数据集,并且在隔离的平均预测中获得了显着差异。这种方法构成了一种评估置信度的新颖方法,因为它不仅可以查找外推情况,而且可以识别内插问题。

著录项

  • 来源
  • 会议地点 Salamanca(ES);Salamanca(ES)
  • 作者单位

    Laboratories de Investigation y Desarrollo en Computation Cientffica (LIDeCC), Departamento de Ciencias e Ingenieria de la Computation (DCIC), Universidad Nacional del Sur, Bahia Blanca, Argentina Planta Piloto de Ingenien'a Quimica (PLAPIQUI), UNS - CONICET, Bahi'a Blanca, Argentina;

    Laboratories de Investigation y Desarrollo en Computation Cientffica (LIDeCC), Departamento de Ciencias e Ingenieria de la Computation (DCIC), Universidad Nacional del Sur, Bahia Blanca, Argentina Planta Piloto de Ingenien'a Quimica (PLAPIQUI), UNS - CONICET, Bahi'a Blanca, Argentina;

    Laboratories de Investigation y Desarrollo en Computation Cientffica (LIDeCC), Departamento de Ciencias e Ingenieria de la Computation (DCIC), Universidad Nacional del Sur, Bahia Blanca, Argentina;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

    drug discovery; applicability domain; unsupervised learning; supervised learning;

    机译:药物发现;适用范围;无监督学习;监督学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号