首页> 外文会议>Database systems for advanced applications >A Combined Collaborative Filtering Model for Social Influence Prediction in Event-Based Social Networks
【24h】

A Combined Collaborative Filtering Model for Social Influence Prediction in Event-Based Social Networks

机译:基于事件的社交网络中社交影响力预测的组合协同过滤模型

获取原文
获取原文并翻译 | 示例

摘要

Event-based social networks (EBSNs) provide convenient online platforms for users to organize, attend and share social events. Understanding users' social influences in social networks can benefit many applications, such as social recommendation and social marketing. In this paper, we focus on the problem of predicting users' social influences on upcoming events in EBSNs. We formulate this prediction problem as the estimation of unobserved entries of the constructed user-event social influence matrix, where each entry represents the influence value of a user on an event. In particular, we define a user's social influence on a given event as the proportion of the user's friends who are influenced by him/her to attend the event. To solve this problem, we present a combined collaborative filtering model, namely, Matrix Factorization with Event Neighborhood (MF-EN) model, by incorporating event-based neighborhood method into matrix factorization. Due to the fact that the constructed social influence matrix is very sparse and the overlap values in the matrix are few, it is challenging to find reliable similar event neighbors using the widely adopted similarity measures (e.g., Pearson correlation and Cosine similarity). To address this challenge, we propose an additional information based neighborhood discovery (AID) method by considering three event-specific features in EBSNs. The parameters of our MF-EN model are determined by minimizing the associated regularized squared error function through stochastic gradient descent. We conduct a comprehensive performance evaluation on real-world datasets collected from DoubanEvent. Experimental results demonstrate the superiority of the proposed model compared to several alternatives.
机译:基于事件的社交网络(EBSN)为用户提供了方便的在线平台,以组织,参加和共享社交事件。了解用户在社交网络中的社交影响可以使许多应用程序受益,例如社交推荐和社交营销。在本文中,我们关注于预测用户对EBSN中即将发生的事件的社会影响的问题。我们将此预测问题公式化为对构建的用户事件社会影响矩阵的未观察条目的估计,其中每个条目代表用户对事件的影响值。特别地,我们将用户在给定事件上的社交影响定义为受其影响参加该事件的用户朋友的比例。为了解决这个问题,我们通过将基于事件的邻域方法合并到矩阵分解中,提出了一种组合协作过滤模型,即带有事件邻域的矩阵分解(MF-EN)模型。由于构建的社会影响力矩阵非常稀疏,并且矩阵中的重叠值很少,因此使用广泛采用的相似性度量(例如Pearson相关性和余弦相似性)来找到可靠的相似事件邻居是具有挑战性的。为了解决这一挑战,我们通过考虑EBSN中的三个事件特定功能,提出了一种基于信息的附加邻域发现(AID)方法。我们的MF-EN模型的参数是通过随机梯度下降最小化相关的正则平方误差函数来确定的。我们对从DoubanEvent收集的真实数据集进行了全面的性能评估。实验结果表明,与几种替代方案相比,该模型具有优越性。

著录项

  • 来源
  • 会议地点 Dallas(US)
  • 作者单位

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号