首页> 外文期刊>ACM transactions on intelligent systems >Cluster-Based Collaborative Filtering for Sign Prediction in Social Networks with Positive and Negative Links
【24h】

Cluster-Based Collaborative Filtering for Sign Prediction in Social Networks with Positive and Negative Links

机译:具有正负链接的社交网络中基于聚类的协同过滤用于符号预测

获取原文
获取原文并翻译 | 示例

摘要

Social network analysis and mining get ever-increasingly important in recent years, which is mainly due to the availability of large datasets and advances in computing systems. A class of social networks is those with positive and negative links. In such networks, a positive link indicates friendship (or trust), whereas links with a negative sign correspond to enmity (or distrust). Predicting the sign of the links in these networks is an important issue and has many applications, such as friendship recommendation and identifying malicious nodes in the network. In this manuscript, we proposed a new method for sign prediction in networks with positive and negative links. Our algorithm is based first on clustering the network into a number of clusters and then applying a collaborative filtering algorithm. The clusters are such that the number of intra-cluster negative links and inter-cluster positive links are minimal, that is, the clusters are socially balanced as much as possible (a signed graph is socially balanced if it can be divided into clusters with all positive links inside the clusters and all negative links between them). We then used similarity between the clusters (based on the links between them) in a collaborative filtering algorithm. Our experiments on a number of real datasets showed that the proposed method outperformed previous methods, including those based on social balance and status theories and one based on a machine learning framework (logistic regression in this work).
机译:近年来,社交网络分析和挖掘变得越来越重要,这主要归因于大型数据集的可用性和计算系统的进步。一类社交网络是具有积极和消极联系的社交网络。在这样的网络中,正向链接表示友谊(或信任),而负向链接则表示敌意(或不信任)。预测这些网络中链接的标志是一个重要的问题,并且具有许多应用程序,例如友谊推荐和识别网络中的恶意节点。在本手稿中,我们提出了一种在具有正负链接的网络中进行符号预测的新方法。我们的算法首先基于将网络聚类为多个聚类,然后应用协作过滤算法。群集使得群集内负链接和群集间正链接的数量最少,也就是说,群集在社会上尽可能保持平衡(如果可以将签名图划分为具有所有集群内部的正向链接以及它们之间的所有负向链接)。然后,我们在协作过滤算法中使用了群集之间的相似性(基于它们之间的链接)。我们在大量真实数据集上的实验表明,所提出的方法优于以前的方法,包括基于社会平衡和地位理论的方法以及基于机器学习框架的方法(本文中的逻辑回归)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号