【24h】

High-performance 1300-nm InAs/GaAs quantum-dot lasers

机译:高性能1300 nm InAs / GaAs量子点激光器

获取原文
获取原文并翻译 | 示例

摘要

Quantum dot (QD) lasers incorporating the dot-in-a-well (DWELL) structures offer the prospect of low-cost and high-performance sources for telecom applications at 1300 nm. A number of significant advantages have been demonstrated to arise from the 0-D density of states, such as low threshold, low noise, low chirp and relative temperature insensitivity. However QD lasers suffer from a low modal gain per dot layer, which is a major factor of limiting high-speed performance. To address this, both a high in-plane dot density and the use of multilayer structure are necessary and this presents a major challenge for molecular beam epitaxy (MBE) growth. In this work, to increase the gain of 1300-nm quantum-dot (QD) lasers, we first optimize the MBE growth of InAs/InGaAs QD structure for single-layer epitaxy structure with In composition within InGaAs well. Then we proposed a growth technique, high-growth-temperature spacer layer to suppress the dislocation formation for the multilayer QD structure. These lead to the realization of high-performance multilayer 1300-nm QD lasers with extremely low threshold current density (J_(th)) of 17 A/cm~2 at room temperature (RT) under continuous-wave (cw) operation and high output power of over 100 mW. By combining the high-growth-temperature spacer layer technique with the p-type modulation doping structure, a negative characteristic temperature above RT has been demonstrated for a 5-layer QD laser structure. Further modification of the high-growth-temperature spacer layer technique, we realized a very low RT threshold current density of 33 A/cm~2 for a 7-layer p-type-modulated QD laser. The temperature coefficient of~0.11 nm/K over the temperature range from 20 to 130 ℃ has also been realized by modifying the strain profile of InGaAs capping layer. These techniques could find application in lasers designed for optical fiber systems.
机译:结合孔内(DWELL)结构的量子点(QD)激光器为1300 nm电信应用提供了低成本和高性能光源的前景。已经证明,由于状态的0-D密度而产生了许多显着的优势,例如低阈值,低噪声,低线性调频和相对温度不敏感。然而,QD激光器每点层的模态增益低,这是限制高速性能的主要因素。为了解决这个问题,既需要高的面内点密度,又需要使用多层结构,这对分子束外延(MBE)的生长提出了重大挑战。在这项工作中,为了增加1300 nm量子点(QD)激光器的增益,我们首先针对InGaAs内具有In成分的单层外延结构优化了InAs / InGaAs QD结构的MBE生长。然后,我们提出了一种生长技术,即高生长温度的隔离层,以抑制多层QD结构的位错形成。这些导致了高性能多层1300 nm QD激光器的实现,该激光器在连续波(cw)下在室温(RT)下具有极低的阈值电流密度(J_(th))为17 A / cm〜2的高阈值电流密度输出功率超过100 mW。通过将高生长温度间隔层技术与p型调制掺杂结构相结合,已经证明了5层QD激光器结构在RT之上的负特性温度。对高生长温度隔离层技术的进一步修改,我们实现了7层p型调制QD激光器的非常低的RT阈值电流密度,为33 A / cm〜2。通过改变InGaAs覆盖层的应变分布,还可以在20〜130℃的温度范围内达到〜0.11 nm / K的温度系数。这些技术可以在为光纤系统设计的激光器中找到应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号