【24h】

Symbolic Processing Methods for 3D Visual Processing

机译:3D视觉处理的符号处理方法

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to describe a theory that defines an open method for solving 3D visual data processing and artificial intelligence problems that is independent of hardware or software implementation. The goal of the theory is to generalize and abstract the process of 3D visual processing so that the method can be applied to a wide variety of 3D visual processing problems. Once the theory is described a heuristic derivation is given. Symbolic processing methods can be generalized into an abstract model composed of eight basic components. The symbolic processing model components are: input data; input data interface; symbolic data library; symbolic data environment space; relationship matrix; symbolic logic driver; output data interface and output data. An obstacle detection and avoidance experiment was constructed to demonstrate the symbolic processing method. The results of the robot obstacle avoidance experiment demonstrated that the mobile robot could successfully navigate the obstacle course using symbolic processing methods for the control software. The significance of the symbolic processing approach is that the method arrived at a solution by using a more formal quantifiable process. Some of the practical applications for this theory are: 3D object recognition, obstacle avoidance, and intelligent robot control.
机译:本文的目的是描述一种理论,该理论定义了一种独立于硬件或软件实现的解决3D视觉数据处理和人工智能问题的开放方法。该理论的目的是概括和抽象3D视觉处理的过程,以便将该方法应用于各种3D视觉处理问题。一旦描述了理论,就会给出启发式推导。可以将符号处理方法概括为一个由八个基本组件组成的抽象模型。符号处理模型的组成部分是:输入数据;输入数据接口;符号数据库符号数据环境空间;关系矩阵符号逻辑驱动器;输出数据接口和输出数据。进行了障碍物检测和回避实验,以演示符号处理方法。机器人避障实验的结果表明,移动机器人可以使用控制软件的符号处理方法成功导航障碍物路线。符号处理方法的重要性在于,该方法通过使用更正式的可量化过程得出了解决方案。该理论的一些实际应用是:3D对象识别,避障和智能机器人控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号