首页> 外文会议>Conference on Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision Oct 29-31, 2001, Newton, USA >Image Understanding Systems Based on The Unifying Representation Of Perceptual and Conceptual Information and The Solution of Mid-level and High-level Vision Problems
【24h】

Image Understanding Systems Based on The Unifying Representation Of Perceptual and Conceptual Information and The Solution of Mid-level and High-level Vision Problems

机译:基于感知和概念信息统一表示的图像理解系统以及中高层视觉问题的解决

获取原文
获取原文并翻译 | 示例

摘要

Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphsetworks. The ability of human brain to emulate similar graphetworks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the "cortical software". Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graphetwork transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently "unexplainable" results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes ha both "what" and "where" visual pathways. Such systems can open new horizons for robotic and computer vision industries.
机译:视觉是将视觉信息转换为知识结构的大型信息系统的一部分。这些结构驱动视觉过程,通过反馈解决歧义和不确定性,并提供图像理解,即根据此类知识模型来解释视觉信息。基于这种原理的计算机视觉系统需要统一感知和概念信息的表示。计算机仿真模型是基于图形/网络构建的。发现了人脑模拟相似图形/网络模型的能力。这意味着我们对大脑知识的范式从神经网络到“皮质软件”的非常重要的转变。从主要视觉区域开始,大脑将图像分析为图型空间结构。主要区域在空间网格状结构(节点是皮质列)上提供图像特征的主动融合。不同邻域特征的空间组合不能描述为被分析区域的统计/整体特征,而可以唯一地表征这种区域本身。这样的结构自然存在空间逻辑和拓扑。诸如聚类,感知分组,多层分层压缩,图形与地面分离等中级视觉过程是特殊的图形/网络转换。他们将低级图像结构转换为一组更抽象的图像,它们代表对象和视觉场景,使它们易于由高级知识结构进行分析。这种分析的结果是诸如阴影,遮挡等形状的高级视觉现象。这种方法不仅提供机会来频繁地解释认知科学的“无法解释的”结果,而且还提供了创建智能计算机视觉系统的功能,该系统可以模拟具有“什么”和“何处”视觉路径的感知过程。这样的系统可以为机器人和计算机视觉行业开辟新的视野。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号