首页> 外文期刊>Affective Computing, IEEE Transactions on >Assistive Image Comment Robot—A Novel Mid-Level Concept-Based Representation
【24h】

Assistive Image Comment Robot—A Novel Mid-Level Concept-Based Representation

机译:辅助图像评论机器人-一种新颖的基于概念的中级表示形式

获取原文
获取原文并翻译 | 示例

摘要

We present a general framework and working system for predicting likely affective responses of the viewers in the social media environment after an image is posted online. Our approach emphasizes a mid-level concept representation, in which intended affects of the image publisher is characterized by a large pool of visual concepts (termed PACs) detected from image content directly instead of textual metadata, evoked viewer affects are represented by concepts (termed VACs) mined from online comments, and statistical methods are used to model the correlations among these two types of concepts. We demonstrate the utilities of such approaches by developing an end-to-end Assistive Comment Robot application, which further includes components for multi-sentence comment generation, interactive interfaces, and relevance feedback functions. Through user studies, we showed machine suggested comments were accepted by users for online posting in 90 percent of completed user sessions, while very favorable results were also observed in various dimensions (plausibility, preference, and realism) when assessing the quality of the generated image comments.
机译:我们提供了一个总体框架和工作系统,用于预测图像在线发布后在社交媒体环境中观众的可能的情感反应。我们的方法强调中级概念表示,其中图像发布者的预期效果的特征是直接从图像内容而不是文本元数据中检测到大量视觉概念(称为PAC),诱发的观看者情感由概念表示(称为从在线评论中提取的VACs和统计方法用于对这两种类型的概念之间的相关性进行建模。我们通过开发端到端的“辅助注释机器人”应用程序来演示这种方法的实用性,该应用程序还包括用于多句子注释生成,交互界面和相关性反馈功能的组件。通过用户研究,我们显示了机器建议的评论已在90%的已完成用户会话中被用户接受以在线发布,同时在评估生成图像的质量时,在各个维度(合理性,偏好和真实性)上也观察到了非常满意的结果注释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号