【24h】

Based on EEMD-HHT Marginal Spectrum of Speech Emotion Recognition

机译:基于EEMD-HHT边际谱的语音情感识别

获取原文
获取原文并翻译 | 示例

摘要

Hilbert-Huang Transform is a time-frequency analysis method that apply to the nonlinear and non-stationary signal analysis, and has good adaptability. And The empirical mode decomposition(EMD) is the core part of HHT. Traditional EMD decomposition exists mode mixing phenomenon. To overcome this phenomenon, a new noise-assisted data analysis (NADA) method, the Ensemble EMD (EEMD), is proposed, which defines the true IMF components as the mean of an ensemble of trials and each consisting of the signal plus a white noise of finite amplitude. Finally the amplitude feature of emotional speech signal marginal spectrum is extracted using SVM classifier on emotional speech recognition.
机译:Hilbert-Huang变换是一种时频分析方法,适用于非线性和非平稳信号分析,具有良好的适应性。而经验模态分解(EMD)是HHT的核心部分。传统的EMD分解存在模式混合现象。为了克服这种现象,提出了一种新的噪声辅助数据分析(NADA)方法,即集成EMD(EEMD),该方法将IMF的真实分量定义为一组试验的平均值,每个分量都包括信号和白色信号。有限幅度的噪声。最后,利用SVM分类器提取了情感语音信号边缘频谱的幅度特征,用于情感语音识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号