首页> 外文期刊>Affective Computing, IEEE Transactions on >Feature Pooling of Modulation Spectrum Features for Improved Speech Emotion Recognition in the Wild
【24h】

Feature Pooling of Modulation Spectrum Features for Improved Speech Emotion Recognition in the Wild

机译:用于调制频谱特征的功能汇集,以改善语音情绪识别在野外

获取原文
获取原文并翻译 | 示例

摘要

Interest in affective computing is burgeoning, in great part due to its role in emerging affective human-computer interfaces (HCI). To date, the majority of existing research on automated emotion analysis has relied on data collected in controlled environments. With the rise of HCI applications on mobile devices, however, so-called "in-the-wild" settings have posed a serious threat for emotion recognition systems, particularly those based on voice. In this case, environmental factors such as ambient noise and reverberation severely hamper system performance. In this paper, we quantify the detrimental effects that the environment has on emotion recognition and explore the benefits achievable with speech enhancement. Moreover, we propose a modulation spectral feature pooling scheme that is shown to outperform a state-of-the-art benchmark system for environment-robust prediction of spontaneous arousal and valence emotional primitives. Experiments on an environment-corrupted version of the RECOLA dataset of spontaneous interactions show the proposed feature pooling scheme, combined with speech enhancement, outperforming the benchmark across different noise-only, reverberation-only and noise-plus-reverberation conditions. Additional tests with the SEWA database show the benefits of the proposed method for in-the-wild applications.
机译:由于其在新兴的情感人机界面(HCI)中的作用,对情感计算的兴趣是蓬勃发展的。迄今为止,大多数关于自动情绪分析的现有研究依赖于受控环境中收集的数据。然而,随着移动设备上的HCI应用的兴起,所谓的“野外”设置对情感识别系统构成了严重的威胁,特别是基于语音的威胁。在这种情况下,环境因素如环境噪声和混响严重妨碍系统性能。在本文中,我们量化了环境对情感认可的不利影响,并探讨了语音增强所能实现的益处。此外,我们提出了一种调制光谱特征池方案,其显示出优于用于环境鲁棒预测的自发令人震撼和价基元的环境鲁棒预测的最新的基准系统。对自发交互的Recola数据集的环境损坏版本的实验显示了所提出的特征池方案,结合语音增强,优于不同噪声,仅混响和噪声加混响条件的基准。使用SEWA数据库的额外测试显示了普遍应用程序的提出方法的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号