首页> 外文期刊>Knowledge-Based Systems >Speech emotion recognition using amplitude modulation parameters and a combined feature selection procedure
【24h】

Speech emotion recognition using amplitude modulation parameters and a combined feature selection procedure

机译:使用幅度调制参数和组合特征选择过程的语音情感识别

获取原文
获取原文并翻译 | 示例

摘要

Speech emotion recognition (SER) is a challenging framework in demanding human machine interaction systems. Standard approaches based on the categorical model of emotions reach low performance, probably due to the modelization of emotions as distinct and independent affective states. Starting from the recently investigated assumption on the dimensional circumplex model of emotions, SER systems are structured as the prediction of valence and arousal on a continuous scale in a two-dimensional domain. In this study, we propose the use of a PLS regression model, optimized according to specific features selection procedures and trained on the Italian speech corpus EMOVO, suggesting a way to automatically label the corpus in terms of arousal and valence. New speech features related to the speech amplitude modulation, caused by the slowly-varying articulatory motion, and standard features extracted from the pitch contour, have been included in the regression model. An average value for the coefficient of determination R~2 of 0.72 (maximum value of 0.95 for fear and minimum of 0.60 for sadness) is obtained for the female model and a value for R2 of 0.81 (maximum value of 0.89 for anger and minimum value of 0.71 for joy) is obtained for the male model, over the seven primary emotions (including the neutral state).
机译:语音情感识别(SER)是要求苛刻的人机交互系统中具有挑战性的框架。基于情感分类模型的标准方法的效果很差,这可能是由于将情感建模为不同且独立的情感状态。从最近研究的关于维的维度环绕模型的假设开始,SER系统被构造为在二维域内连续尺度上的价和唤醒的预测。在这项研究中,我们建议使用PLS回归模型,该模型根据特定的特征选择过程进行了优化,并在意大利语音语料库EMOVO上进行了培训,从而提出了一种根据觉醒和效价自动标记语料库的方法。由缓慢变化的发音运动引起的与语音幅度调制相关的新语音特征,以及从音高轮廓中提取的标准特征,已包含在回归模型中。对于女性模型,确定系数R〜2的平均值为0.72(恐惧的最大值为0.95,悲伤的最小值为0.60),R2的平均值为0.81(愤怒和最小值的最大值为0.89)。在七个主要情感(包括中立状态)下,男模获得了0.71的“快乐”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号