首页> 外文会议>Computing and combinatorics >Ramsey Numbers for Line Graphs and Perfect Graphs
【24h】

Ramsey Numbers for Line Graphs and Perfect Graphs

机译:线图和完美图的Ramsey数

获取原文
获取原文并翻译 | 示例

摘要

For any graph class G and any two positive integers i and j. the Ramsey number R_g,(i,j) is the smallest integer such that every graph in G on at least R_G(i,j) vertices has a clique of size i or an independent set of size j. For the class of all graphs Ramsey numbers are notoriously hard to determine, and the exact vahies are known only for very small integers i and j. For planar graphs all Ramsey numbers can be determined by an exact formula, whereas for claw-free graphs there exist Ramsey numbers that are as difficult to determine as for arbitrary graphs. No further graph classes seem to have been studied for this purpose. Here, we give exact formulas for determining all Ramsey numbers for various classes of graphs. Our main result is an exact formula for all Ramsey numbers for line graphs, which form a large subclass of claw-free graphs and are not perfect. We obtain this by proving a general result of independent interest: an upper bound on the number of edges any graph can have if it has bounded degree and bounded matching size. As complementary results, we determine all Ramsey numbers for perfect graphs and for several subclasses of perfect graphs.
机译:对于任何图类G以及任何两个正整数i和j。拉姆齐数R_g,(i,j)是最小的整数,因此至少R_G(i,j)顶点上G中的每个图都有一个大小为i的集团或一个大小为j的独立集合。对于所有图的类别,众所周知,很难确定Ramsey数,仅对很小的整数i和j知道确切的vahies。对于平面图,所有Ramsey数都可以通过精确公式确定,而对于无爪图,则存在与任意图一样难以确定的Ramsey数。似乎没有为此目的研究其他图类。在这里,我们给出用于确定各种图类的所有拉姆齐数的精确公式。我们的主要结果是为线图的所有Ramsey数提供一个精确的公式,该公式构成了无爪图的大子类,并且并不完美。我们通过证明一个独立兴趣的一般结果来获得此结果:任何图如果具有边界度和边界匹配大小,则可以具有的边数上限。作为补充结果,我们确定理想图和理想图的几个子类的所有拉姆齐数。

著录项

  • 来源
    《Computing and combinatorics》|2012年|204-215|共12页
  • 会议地点 Sydney(AU)
  • 作者单位

    Department of Informatics, University of Bergen, Norway;

    Department of Informatics, University of Bergen, Norway;

    Department of Informatics, University of Bergen, Norway;

    Department of Informatics, University of Bergen, Norway;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号