首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >A unified approach to salient object detection via low rank matrix recovery
【24h】

A unified approach to salient object detection via low rank matrix recovery

机译:通过低秩矩阵恢复进行显着目标检测的统一方法

获取原文
获取原文并翻译 | 示例

摘要

Salient object detection is not a pure low-level, bottom-up process. Higher-level knowledge is important even for task-independent image saliency. We propose a unified model to incorporate traditional low-level features with higher-level guidance to detect salient objects. In our model, an image is represented as a low-rank matrix plus sparse noises in a certain feature space, where the non-salient regions (or background) can be explained by the low-rank matrix, and the salient regions are indicated by the sparse noises. To ensure the validity of this model, a linear transform for the feature space is introduced and needs to be learned. Given an image, its low-level saliency is then extracted by identifying those sparse noises when recovering the low-rank matrix. Furthermore, higher-level knowledge is fused to compose a prior map, and is treated as a prior term in the objective function to improve the performance. Extensive experiments show that our model can comfortably achieves comparable performance to the existing methods even without the help from high-level knowledge. The integration of top-down priors further improves the performance and achieves the state-of-the-art. Moreover, the proposed model can be considered as a prototype framework not only for general salient object detection, but also for potential task-dependent saliency applications.
机译:显着的对象检测不是纯粹的底层,自下而上的过程。甚至对于与任务无关的图像显着性,高级知识也很重要。我们提出了一个统一的模型,将传统的低层特征与高层指导相结合以检测出显着物体。在我们的模型中,图像表示为低阶矩阵加上某个特征空间中的稀疏噪声,其中非显着区域(或背景)可以用低阶矩阵来解释,而显着区域则由稀疏的噪音。为了确保该模型的有效性,引入了特征空间的线性变换并且需要学习。给定图像,然后通过在恢复低秩矩阵时识别那些稀疏噪声来提取其低显着性。此外,融合了更高层次的知识以构成一个先验图,并在目标函数中被视为先验项以提高性能。大量的实验表明,即使没有高级知识的帮助,我们的模型也可以舒适地实现与现有方法相当的性能。自上而下的先验集成进一步提高了性能并达到了最新水平。此外,所提出的模型不仅可以用于一般显着对象检测,而且可以用于潜在的与任务相关的显着性应用,可以视为原型框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号