首页> 外文期刊>Journal of visual communication & image representation >Salient object detection via spectral graph weighted low rank matrix recovery
【24h】

Salient object detection via spectral graph weighted low rank matrix recovery

机译:通过频谱图加权低秩矩阵恢复进行显着物体检测

获取原文
获取原文并翻译 | 示例

摘要

A novel saliency detection method via spectral graph (SG) weighted low rank matrix recovery (LR) is presented in this paper. The location, color, and boundary priors are exploited in many LR-based saliency detection methods. However, these priors do not work well when the salient objects are far away from image center, especially when the background is complicated and has low contrast with objects. Because spectral graph contains rich image contrast, it is used as an efficient weight to obtain a much reasonable high-level prior in the proposed LR-based saliency model. Compared with previous LR-based methods, low rank matrix and sparse matrix rather than only sparse matrix are used to calculate the final saliency by an integration function and an activation function. The numerical and visual results on four challenging salient object datasets show that our method performs competitively for salient object detection task against some recent state-of-the-art algorithms.
机译:提出了一种基于谱图加权低秩矩阵恢复(LR)的显着性检测方法。在许多基于LR的显着性检测方法中都利用了位置,颜色和边界先验。但是,当显着物体远离图像中心时,尤其是当背景复杂且与物体的对比度较低时,这些先验效果不佳。由于光谱图包含丰富的图像对比度,因此在建议的基于LR的显着性模型中,光谱图可作为有效权重来获得非常合理的高级先验。与以前的基于LR的方法相比,低阶矩阵和稀疏矩阵而不是仅由稀疏矩阵通过积分函数和激活函数来计算最终显着性。在四个具有挑战性的显着目标数据集上的数值和视觉结果表明,相对于一些最新的算法,我们的方法在执行显着目标检测任务方面具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号