【24h】

Research on Static Characteristics of Six-Dimension Force Sensor

机译:六维力传感器的静态特性研究

获取原文
获取原文并翻译 | 示例

摘要

The static coupling of six-dimension force sensor is one major factor of limiting its measuring accuracy. This paper analyzed the fundamental principle of the linear decoupling on six-dimension force sensor, and compared two different linear decoupling algorithms with the index of isotropy, which are based on the Cramer theorem and least square method. Two nonlinear decoupling methods of data base and Radial Basis Function neural network were proposed. The research result indicates that the isotropy of calibration matrix gained by least square method is superior to the one by Cramer theorem and that the linear error and dimensional interference are greatly reduced by using the RBF neural network model to approach the functional interrelation of generalized force vector and output voltage, whose overall error is less than 1% full scale.
机译:六维力传感器的静态耦合是限制其测量精度的主要因素之一。本文分析了六维力传感器上线性解耦的基本原理,并比较了基于Cramer定理和最小二乘方法的两种不同的具有各向同性指标的线性解耦算法。提出了两种非线性解耦方法和径向基函数神经网络。研究结果表明,最小二乘法获得的标定矩阵的各向异性优于Cramer定理,运用RBF神经网络模型求解广义力向量的函数相关性,线性误差和尺寸干扰大大减小。和输出电压,其总误差小于满量程的1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号