首页> 外文会议>Computer analysis of images and patterns. >Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification
【24h】

Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification

机译:高分辨率计算机断层扫描(HRCT)肺图像的定向多尺度建模用于弥漫性肺疾病分类

获取原文
获取原文并翻译 | 示例

摘要

A directional multi-scale modeling scheme based on wavelet and contourlet transforms is employed to describe HRCT lung image textures for classifying four diffuse lung disease patterns: normal, emphysema, ground glass opacity (GGO) and honey-combing. Generalized Gaussian density parameters are used to represent the detail sub-band features obtained by wavelet and contourlet transforms. In addition, support vector machines (SVMs) with excellent performance in a variety of pattern classification problems are used as classifier. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512×512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs of those slices marked by experienced radiologists. We employ this technique at different wavelet and contourlet transform scales for diffuse lung disease classification. The technique presented here has best overall sensitivity 93.40% and specificity 98.40%.
机译:采用基于小波和轮廓波变换的定向多尺度建模方案来描述HRCT肺图像纹理,以对四种弥漫性肺部疾病模式进行分类:正常,肺气肿,毛玻璃不透明(GGO)和蜜梳。广义高斯密度参数用于表示通过小波和轮廓波变换获得的细节子带特征。另外,在各种模式分类问题中具有出色性能的支持向量机(SVM)用作分类器。该方法在38位患者的89个切片的集合上进行了测试,每个切片的大小为512×512,DICOM格式为16位/像素。数据集包含由经验丰富的放射科医生标记的切片的70,000 ROI。我们在不同的小波和轮廓波变换尺度上应用此技术,以进行弥漫性肺疾病分类。这里介绍的技术具有93.40%的最佳总体灵敏度和98.40%的特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号