首页> 外文会议>Computer algebra in scientific computing >Parametric Qualitative Analysis of Ordinary Differential Equations: Computer Algebra Methods for Excluding Oscillations (Extended Abstract) (Invited Talk)
【24h】

Parametric Qualitative Analysis of Ordinary Differential Equations: Computer Algebra Methods for Excluding Oscillations (Extended Abstract) (Invited Talk)

机译:常微分方程的参数定性分析:排除振荡的计算机代数方法(扩展摘要)(特邀演讲)

获取原文
获取原文并翻译 | 示例

摘要

Investigating oscillations for parametric ordinary differential equations (ODEs) has many applications in science and engineering but is a very hard problem. Already for two dimensional polynomial systems this question is related to Hilbert's 16th problem, which is still unsolved [1]. Using the theory of Hopf-bifurcations some non-numeric algorithmic methods have been recently developed to determine ranges of parameters for which some small stable limit cycle will occur in the system [2,3,4,5,6,7,8]. These algorithms give exact conditions for the existence of fixed points undergoing a Poincare-Andronov-Hopf bifurcation that give birth to a small stable limit cycle under some general conditions which can be made algorithmic, too. If these conditions are not satisfied, one can be sure that there are no such fixed points, but unfortunately one cannot conclude that there are no limit cycles—which could arise by other means. Nevertheless, it is tempting to conjecture even in these cases that there are no oscillations, as has been done e.g. in [5,6].
机译:研究参数常微分方程(ODE)的振动在科学和工程中有许多应用,但这是一个非常困难的问题。对于二维多项式系统,此问题已与希尔伯特的第16个问题相关,该问题尚未解决[1]。使用霍普夫分支的理论,最近开发了一些非数值算法方法来确定参数范围,对于这些参数范围,系统中将出现一些小的稳定极限环[2,3,4,5,6,7,8]。这些算法为存在Poincare-Andronov-Hopf分叉的不动点的存在提供了精确的条件,这些不动点在某些一般条件下也可产生较小的稳定极限环,这也可以通过算法实现。如果不满足这些条件,则可以确定没有这样的固定点,但是不幸的是,不能得出结论,即没有极限循环,这可以通过其他方式产生。然而,即使在这些情况下,也没有办法像例如已经做过的那样进行振荡来推测。在[5,6]中。

著录项

  • 来源
  • 会议地点 Tsakhkadzor(AM);Tsakhkadzor(AM)
  • 作者单位

    Institut fur Informatik II, Universitat Bonn, Romerstr. 164, 53117 Bonn, Germany;

    Departamento de Matematicas, Estadi'stica y Computation, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain;

    Institut fur Mathematik, Universitat Kassel, Heinrich-Plett-Strafie 40 34132 Kassel, Germany;

    Institut fur Informatik II, Universitat Bonn, Romerstr. 164, 53117 Bonn, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号