首页> 外文会议>Computational Science - ICCS 2007 pt.1; Lecture Notes in Computer Science; 4487 >Predicting Binding Sites of Hepatitis C Virus Complexes Using Residue Binding Propensity and Sequence Entropy
【24h】

Predicting Binding Sites of Hepatitis C Virus Complexes Using Residue Binding Propensity and Sequence Entropy

机译:使用残基结合倾向和序列熵预测丙型肝炎病毒复合物的结合位点

获取原文
获取原文并翻译 | 示例

摘要

Hepatitis C virus (HCV) remains a dangerous health problem for the reason that the mechanism of hepatocyte infection is still unknown. Hence, much attention has been put on the problem of interaction between HCV and human proteins. However, the research is still standing at the beginning point due to the lack of structure information of HCV and human proteins. We extracted the most representative set of 18 complexes all known HCV protein complexes involving human proteins, and computed the binding propensity of each residue and sequence entropy of each HCV protein, analyzed the most representative set of 18 complexes. Using a radial basis function neural network (RBFNN), we predicted binding sites with an overall sensitivity of 77%. The approach will help understand the interaction between HCV and human proteins.
机译:丙型肝炎病毒(HCV)仍然是危险的健康问题,原因是尚不清楚肝细胞感染的机制。因此,人们已经对HCV和人类蛋白质之间的相互作用问题给予了极大的关注。然而,由于缺乏HCV和人类蛋白质的结构信息,该研究仍处于起步阶段。我们提取了包括人蛋白在内的所有已知HCV蛋白复合物的18种复合物的最具代表性,并计算了每个HCV蛋白的每个残基的结合倾向和序列熵,分析了18种复合物的最具代表性的组。使用径向基函数神经网络(RBFNN),我们预测结合位点的整体敏感性为77%。该方法将有助于了解HCV与人类蛋白质之间的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号